DOI QR코드

DOI QR Code

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration) ;
  • Zhang, Yi (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration) ;
  • Liao, Qinzhuo (Department of Petroleum Engineering, CPG, King Fahd University of Petroleum & Minerals)
  • 투고 : 2021.03.31
  • 심사 : 2021.10.20
  • 발행 : 2022.02.25

초록

Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

키워드

과제정보

The authors gratefully acknowledge the financial support from Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (Grant No. 2021D18), National Natural Science Foundation of China (Grand No. 51908324 & 52111540161). The support from Tsinghua University Initiative Scientific Research Program (20213080003) is also greatly appreciated.

참고문헌

  1. Ang, G.L., Ang, Ang, A.H.S. and Tang, W.H. (1992), "Optimal importance-sampling density estimator", J. Eng. Mech., 118(6), 1146-1163. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:6(1146)
  2. Asgarieh, E., Moaveni, B. and Stavridis, A. (2014), "Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake", J. Sound Vib., 333(23), 6057-6073. https://doi.org/10.1016/j.jsv.2014.04.064
  3. Beck, J.L. and Au, S.K. (2002), "Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation", J. Eng. Mech., 128(4), 380-391. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(380)
  4. Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
  5. Behmanesh, I. and Moaveni, B. (2015), "Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian finite element model updating", Struct. Control Health Monitor., 22(3), 463-483. https://doi.org/10.1002/stc.1684
  6. Bhattacharyya, A. (1943), "On a measure of divergence between two statistical populations defined by their probability distributions", Bull. Calcutta Math. Soc., 35, 99-109.
  7. Breiman, L. (1996), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/bf00058655
  8. Cheung, S.H. and Beck, J.L. (2009), "Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters", J. Eng. Mech., 135(4), 243-255. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(243)
  9. Ching, J. and Chen, Y.C. (2007), "Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging", J. Eng. Mech., 133(7), 816-832. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816)
  10. Ching, J., Muto, M. and Beck, J.L. (2006), "Structural model updating and health monitoring with incomplete modal data using Gibbs sampler", Comput.-Aided Civil Infrastr. Eng., 21(4), 242-257. https://doi.org/10.1111/j.1467-8667.2006.00432.x
  11. Chung, T.T., Cho, S., Yun, C.B. and Sohn, H. (2012), "Finite element model updating of Canton Tower using regularization technique", Smart Struct. Syst., Int. J., 10(4-5), 459-470. https://doi.org/10.12989/sss.2012.10.4_5.459
  12. Collins, J.D., Hart, G.C., Hasselman, T.K. and Kennedy, B. (1974), "Statistical identification of structures", AIAA J., 12(2), 185-190. https://doi.org/10.2514/3.49190
  13. Deng, Z., Guo, Z. and Zhang, X. (2017), "Interval model updating using perturbation method and radial basis function neural networks", Mech. Syst. Signal Process., 84, 699-716. https://doi.org/10.1016/j.ymssp.2016.09.001
  14. El-Borgi, S., Choura, S., Ventura, C., Baccouch, M. and Cherif, F. (2005), "Modal identification and model updating of a reinforced concrete bridge", Smart Struct. Syst., Int. J., 1(1), 83-101. https://doi.org/10.12989/sss.2005.1.1.083
  15. Ewins, D.J. (2009), Modal Testing: Theory, Practice and Application, John Wiley & Sons, New York, NY, USA.
  16. Feng, Z., Lin, Y., Wang, W., Hua, X. and Chen, Z. (2020), "Probabilistic Updating of Structural Models for Damage Assessment Using Approximate Bayesian Computation", Sensors, 20(11), 3197. https://doi.org/10.3390/s20113197
  17. Friswell, M. and Mottershead, J.E. (2013), Finite Element Model Updating In Structural Dynamics (Vol. 38), Springer Science & Business Media, Berlin, Germany.
  18. Geman, S. and Geman, D. (1984), "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images", IEEE Transact. Pattern Anal. Mach. Intell., (6), 721-741. https://doi.org/10.1109/TPAMI.1984.4767596
  19. Ghanem, R.G. and Spanos, P.D. (2003), Stochastic finite elements: a spectral approach, Dover Publications Inc, Mineola, NY, USA.
  20. Hastings, W.K. (1970), "Monte Carlo sampling methods using Markov chains and their applications", Biometrika, 57(1), 97-109. https://doi.org/10.2307/2334940
  21. He, W., Hao, P. and Li, G. (2021), "A novel approach for reliability analysis with correlated variables based on the concepts of entropy and polynomial chaos expansion", Mech. Syst. Signal Process., 146, 106980. https://doi.org/10.1016/j.ymssp.2020.106980
  22. Hemez, F.M. and Doebling, S.W. (2001), "Review and assessment of model updating for non-linear, transient dynamics", Mech. Syst. Signal Process., 15(1), 45-74. https://doi.org/10.1006/mssp.2000.1351
  23. Hou, R. and Xia, Y. (2020), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491(9), 115741. https://doi.org/10.1016/j.jsv.2020.115741
  24. Jacquelin, E., Friswell, M.I., Adhikari, S., Dessombz, O. and Sinou, J.J. (2016), "Polynomial chaos expansion with random and fuzzy variables", Mech. Syst. Signal Process., 75, 41-56. https://doi.org/10.1016/j.ymssp.2015.12.001
  25. Jaynes, E.T. (2004), "Probability theory: the logic of science", Mathe. Intell., 57(10), 76-77. https://doi.org/10.1063/1.1825273
  26. Kanev, S., Weber, F. and Verhaegen, M. (2007), "Experimental validation of a finite-element model updating procedure", J. Sound Vib., 300(1-2), 394-413. https://doi.org/10.1016/j.jsv.2006.05.043
  27. Katafygiotis, L.S. and Lam, H.F. (2002), "Tangential-projection algorithm for manifold representation in unidentifiable model updating problems", Earthq. Eng. Struct. Dyn., 31(4), 791-812. https://doi.org/10.1002/eqe.122
  28. Katafygiotis, L.S., Lam, H.F. and Papadimitriou, C. (2000), "Treatment of unidentifiability in structural model updating", Adv. Struct. Eng., 3(1), 19-40. https://doi.org/10.1260/1369433001501996
  29. Kuok, S.C. and Yuen, K.V. (2016), "Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework", Smart Struct. Syst., Int. J., 17(3), 445-470. https://doi.org/10.12989/sss.2016.17.3.445
  30. Lam, H.F., Yang, J.H. and Au, S.K. (2018), "Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection", Struct. Control Health Monitor., 25(4), e2140. https://doi.org/10.1002/stc.2140
  31. Liang, Z., Choi, K.K. and Lee, I. (2011), "Metamodeling method using dynamic kriging for design optimization", AIAA J., 49(9), 2034-2046. https://doi.org/10.2514/1.J051017
  32. Liang, Y., Feng, Q., Li, H. and Jiang, J. (2019), "Damage detection of shear buildings using frequency-change-ratio and model updating algorithm", Smart Struct. Syst., Int. J., 23(2), 107-122. https://doi.org/10.12989/sss.2019.23.2.107
  33. Lloyd, S. (1982), "Least squares quantization in PCM", IEEE Transact. Inform. Theory, 28(2), 129-137. https://doi.org/10.1109/TIT.1982.1056489
  34. Ma, Z., Yun, C.B., Shen, Y.B., Yu, F., Wan, H.P. and Luo, Y.Z. (2019), "Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium", Smart Struct. Syst., Int. J., 24(4), 507-524. https://doi.org/10.12989/sss.2019.24.4.507
  35. MacQueen, J. (1967), "Some methods for classification and analysis of multivariate observations", Proceedings of The Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, June.
  36. Mahalanobis, P.C. (1936), "On the generalised distance in statistics", Proceedings of the National Institute of Sciences of India, 2, 49-55.
  37. Mashayekhi, M. and Santini-Bell, E. (2019), "Three-dimensional multiscale finite element models for in-service performance assessment of bridges", Comput. Aided Civil Infrastr. Eng., 34(5), 385-401. https://doi.org/10.1111/mice.12424
  38. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953), "Equation of state calculations by fast computing machines", J. Chem. Phys., 21(6), 1087-1092. https://doi.org/10.1063/1.1699114
  39. Moaveni, B., He, X., Conte, J.P. and Callafon, R. (2008), "Damage identification of a composite beam using finite element model updating", Comput.-Aided Civil Infrastr. Eng., 23(5). https://doi.org/10.1111/j.1467-8667.2008.00542.x
  40. Mottershead, J.E. and Friswell, M.I. (1993), "Model updating in structural dynamics: a survey", J. Sound Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340
  41. Muto, M. and Beck, J.L. (2008), "Bayesian updating and model class selection for hysteretic structural models using stochastic simulation", J. Vib. Control, 14(1-2), 7-34. https://doi.org/10.1177/1077546307079400
  42. Ni, Y.Q., Xia, Y., Lin, W., Chen, W.H. and Ko, J.M. (2012), "SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data", Smart Struct. Syst., Int. J., 10(4-5), 411-426. https://doi.org/0.12989/sss.2012.10.4_5.411 https://doi.org/10.12989/sss.2012.10.4_5.411
  43. Ntotsios, E., Papadimitriou, C., Panetsos, P., Karaiskos, G., Perros, K. and Perdikaris, P.C. (2009), "Bridge health monitoring system based on vibration measurements", Bull. Earthq. Eng., 7(2), 469. https://doi.org/10.1007/s10518-008-9067-4
  44. Prawin, J. and Rao, A. (2018), "Detection of nonlinear structural behavior using time-frequency and multivariate analysis", Smart Struct. Syst., Int. J., 22(6), 711-725. https://doi.org/10.12989/sss.2018.22.6.711
  45. Rasmussen, C.E. (2003), "Gaussian processes in machine learning", Summer School on Machine Learning, Canberra, Australia, February.
  46. Ravenzwaaij, D.V., Cassey, P. and Brown, S.D. (2018), "A simple introduction to markov chain monte-carlo sampling", Psychon. Bull. Review, 25(1), 143-154. https://doi.org/10.3758/s13423-016-1015-8
  47. Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019
  48. Rocchetta, R., Broggi, M., Huchet, Q. and Patelli, E. (2018), "Online bayesian model updating for structural health monitoring", Mech. Syst. Signal Process., 103, 174-195. https://doi.org/10.1016/j.ymssp.2017.10.015
  49. Schapire, R.E. (1990), "The strength of weak learnability", Mach. Learn., 5(2), 197-227. https://doi.org/10.1007/BF00116037
  50. Schueller, G.I., Calvi, A., Pellissetti, M.F., Pradlwarter, H.J., Fransen, S.H. and Kreis, A. (2009), "Uncertainty analysis of a large-scale satellite finite element model", J. Spacecr. Rockets, 46(1), 191-202. https://doi.org/10.2514/1.32205
  51. Simpson, T.W., Mauery, T.M., Korte, J.J. and Mistree, F. (2001), "Kriging models for global approximation in simulation-based multidisciplinary design optimization", AIAA J., 39(12), 2233-2241. https://doi.org/10.2514/3.15017
  52. Simoen, E., De Roeck, G. and Lombaert, G. (2015), "Dealing with uncertainty in model updating for damage assessment: A review", Mech. Syst. Signal Process., 56, 123-149. https://doi.org/10.1016/j.ymssp.2014.11.001
  53. Sivia, D. and Skilling, J. (2006), Data analysis: A Bayesian Tutorial, Oxford University Press, Oxford, UK.
  54. Song, M., Renson, L., Noel, J.P., Moaveni, B. and Kerschen, G. (2018), "Bayesian model updating of nonlinear systems using nonlinear normal modes", Struct. Control Health Monitor., 25(12), e2258. https://doi.org/10.1002/stc.2258
  55. Straub, D. and Papaioannou, I. (2015), "Bayesian updating with structural reliability methods", J. Eng. Mech., 141(3), 04014134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000839
  56. Teughels, A. and Roeck, G.D. (2005), "Damage detection and parameter identification by finite element model updating", Revue europeenne de genie civil, 9(1-2), 109-158. https://doi.org/10.1080/17747120.2005.9692748
  57. Wiener, N. (1938), "The homogeneous chaos", Am. J. Mathe., 60(4), 897-936. https://doi.org/10.2307/2371268
  58. Yang, J., Ouyang, H. and Zhang, J.F. (2016), "A new method of updating mass and stiffness matrices simultaneously with no spillover", J. Vib. Control, 22(5), 1181-1189. https://doi.org/10.1177/1077546314535278
  59. Yu, E. and Chung, L. (2012), "Seismic damage detection of a reinforced concrete structure by finite element model updating", Smart Struct. Syst., Int. J., 9(3), 253-271. https://doi.org/10.12989/sss.2012.9.3.253
  60. Yuen, K.V. (2010), Bayesian Methods for Structural Dynamics and Civil Engineering, John Wiley & Sons, Singapore.
  61. Zhang, Y., Kim, C.W., Tee, K.F., Garg, A. and Garg A. (2018), "Long-term health monitoring for deteriorated bridge structures based on copula theory", Smart Struct. Syst., Int. J., 21(2), 171-185. https://doi.org/10.12989/sss.2018.21.2.171
  62. Zhang, F.L., Yang, Y.P., Ye, X.W., Yang, J.H. and Han, B.K. (2019), "Structural modal identification and MCMC-based model updating by a Bayesian approach", Smart Struct. Syst., Int. J., 24(5), 631-639. https://doi.org/10.12989/sss.2019.24.5.631
  63. Zhang, Y., Kim, C.W., Zhang, L, Bai, Y, Yang, H, Xu, X. and Zhang, Z. (2020a), "Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach", Smart Struct. Syst., Int. J., 25(3), 285-299. https://doi.org/10.12989/sss.2020.25.3.285
  64. Zhang, Y., Wei, K., Shen, Z., Bai, X., Lu, X. and Soares, C.G. (2020b), "Economic impact of typhoon-induced wind disasters on port operations: A case study of ports in China", Int. J. Disaster Risk Reduct., 50, 101719. https://doi.org/10.1016/j.ijdrr.2020.101719
  65. Zhou, Y. and Lu, Z. (2020), "An enhanced Kriging surrogate modeling technique for high-dimensional problems", Mech. Syst. Signal Process., 140, 106687. https://doi.org/10.1016/j.ymssp.2020.106687