DOI QR코드

DOI QR Code

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K. (Department of Civil Engineering, Isra University) ;
  • Irshidat, Mohammad R. (Center for Advanced Materials (CAM), Qatar University) ;
  • Najjar, Yacoub (Department of Civil Engineering, The University of Mississippi)
  • 투고 : 2021.03.27
  • 심사 : 2021.10.23
  • 발행 : 2022.02.25

초록

This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.

키워드

참고문헌

  1. Ahmed, H., Bogas, J.A., Guedes, M. and Pereira, M.F.C. (2018), "Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites", Magaz. Concrete Res., 71, 408-423. https://doi.org/10.1680/jmacr.17.00562
  2. Alavi, R. and Mirzadeh, H. (2012), "Modeling the compressive strength of cement mortar nano-composites", Computers and Concrete, 10(1), 49-57. https://doi.org/10.12989/cac.2012.10.1.049
  3. Alrekabi, S., Cundy, A.B., Lampropoulos, A., Whitby, R.L.D. and Savina, I. (2017), "Effect of high-intensity sonication on the dispersion of carbon-based nanofilaments in cementitious composites, and its impact on mechanical performance", Mater. Des., 136, 223-237. https://doi.org/10.1016/j.matdes.2017.09.061
  4. Amancio, F.A., De Carvalho Rafael, M.F., De Oliveira Dias, A.R. and Bezerra Cabral, A.E. (2018), "Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures", Procedia Struct. Integr., 11, 91-98. https://doi.org/10.1016/j.prostr.2018.11.013
  5. Amin, M.S., El-Gamal, S.M.A. and Hashem, F.S. (2015), "Fire resistance and mechanical properties of carbon nanotubes - Clay bricks wastes (Homra) composites cement", Constr. Build. Mater., 98, 237-249. https://doi.org/10.1016/j.conbuildmat.2015.08.074
  6. Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M. G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integr., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122
  7. Aquino, K.P.S., Caisip, J.S., Placiente, A.N.I., Reyes, E.C. and Calilung, M.G.V. (2017), "Application of artificial neural network in determination of sorptivity model of concrete with varying percent of replacement of sand to copper slag", HNICEM 2017 - Proceedings of the 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Manila, Philippines, December, pp. 1-5. https://doi.org/10.1109/HNICEM.2017.8269537
  8. Baloch, W.L., Khushnood, R.A. and Khaliq, W. (2018a), "Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures", Constr. Build. Mater., 185, 44-56. https://doi.org/10.1016/j.conbuildmat.2018.07.051
  9. Baloch, W.L., Khushnood, R.A., Memon, S.A., Ahmed, W. and Ahmad, S. (2018b), "Effect of elevated temperatures on mechanical performance of normal and lightweight concretes reinforced with carbon nanotubes", Fire Technol., 54(5), 1331-1367. https://doi.org/10.1007/s10694-018-0733-z
  10. Bani-Hani, K.A., Irshidat, M.R., Al-Rub, R.K.A., Al-Nuaimi, N.A. and Talleh, A.T. (2016), "Strength optimisation of mortar with CNTs and nanoclays", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(5), 340-356. https://doi.org/10.1680/jstbu.14.00106
  11. Behnood, A. and Ghandehari, M. (2009), "Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures", Fire Safety J., 44(8), 1015-1022. https://doi.org/10.1016/j.firesaf.2009.07.001
  12. Beyciollu, A., Emirollu, M., Kocak, Y. and Subasi, S. (2015), "Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR", Comput. Concrete, Int. J., 15(1), 89-101. https://doi.org/10.12989/cac.2015.15.1.089
  13. Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Software, 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
  14. Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/J.COMPOSITESB.2012.05.054
  15. Bosnjak, J., Sharma, A. and Grauf, K. (2019), "Mechanical properties of concrete with steel and polypropylene fibres at elevated temperatures", Fibers, 7(2), 9. https://doi.org/10.3390/fib7020009
  16. Chen, B. and Liu, J. (2004), "Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures", Cement Concrete Res., 34(6), 1065-1069. https://doi.org/10.1016/j.cemconres.2003.11.010
  17. Culfik, M.S. and Ozturan, T. (2002), "Effect of elevated temperatures on the residual mechanical properties of high-performance mortar", Cement Concrete Res., 32(5), 809-816. https://doi.org/10.1016/S0008-8846(02)00709-3
  18. Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
  19. Eidan, J., Rasoolan, I., Rezaeian, A. and Poorveis, D. (2019), "Residual mechanical properties of polypropylene fiberreinforced concrete after heating", Constr. Build. Mater., 198, 195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209
  20. Eskandari, H., Nik, M.G. and Eidi, M.M. (2016), "Prediction of Mortar Compressive Strengths for Different Cement Grades in the Vicinity of Sodium Chloride Using ANN", Procedia Eng., 150, 2185-2192. https://doi.org/10.1016/j.proeng.2016.07.262
  21. Ezziane, M., Kadri, T., Molez, L., Jauberthie, R. and Belhacen, A. (2015), "High temperature behaviour of polypropylene fibres reinforced mortars", Fire Safety J., 71, 324-331. https://doi.org/10.1016/j.firesaf.2014.11.022
  22. Fidan, S., Oktay, H., Polat, S. and Ozturk, S. (2019), "An Artificial Neural Network Model to Predict the Thermal Properties of Concrete Using Different Neurons and Activation Functions", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/3831813
  23. Gao, J., Koopialipoor, M., Armaghani, D.J., Ghabussi, A., Baharom, S., Morasaei, A., Shariati, A., Khorami, M. and Zhou, J. (2020), "Evaluating the bond strength of FRP in concrete samples using machine learning methods", Smart Struct. Syst., Int. J., 26(4), 403-418. https://doi.org/10.12989/sss.2020.26.4.403
  24. Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2020a), "The role of polypropylene microfibers in thermal properties and post-heating behavior of cementitious composites", Materials, 13(12), 2676. https://doi.org/10.3390/ma13122676
  25. Irshidat, M.R., Al-Nuaimi, N., Salim, S. and Rabie, M. (2020b), "Carbon nanotubes dosage optimization for strength enhancement of cementitious composites", Procedia Manuf., 44, 366-370. https://doi.org/10.1016/j.promfg.2020.02.282
  26. Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2021a), "Hybrid effect of carbon nanotubes and polypropylene microfibers on fire resistance, thermal characteristics and microstructure of cementitious composites", Constr. Build. Mater., 266, 121154. https://doi.org/10.1016/j.conbuildmat.2020.121154
  27. Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2021b), "Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites", Molecules, 26(4), 850. https://doi.org/10.3390/molecules26040850
  28. Itani, O.M. and Najjar, Y.M. (2000), "Three-Dimensional Modeling of Spatial Soil Properties via Artificial Neural Networks", Transport. Res. Record: J. Transport. Res. Board, 1709(1), 50-59. https://doi.org/10.3141/1709-07
  29. Kodur, V.K.R., Yu, B. and Solhmirzaei, R. (2017), "A simplified approach for predicting temperatures in insulated RC members exposed to standard fire", Fire Safety J., 92, 80-90. https://doi.org/10.1016/j.firesaf.2017.05.018
  30. Maluk, C., Bisby, L. and Terrasi, G.P. (2017), "Effects of polypropylene fibre type and dose on the propensity for heat-induced concrete spalling", Eng. Struct., 141, 584-595. https://doi.org/10.1016/j.engstruct.2017.03.058
  31. Manzur, T., Yazdani, N., Abul, M. and Emon, B. (2014), "Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites", J. Mater., 2014. https://doi.org/10.1155/2014/960984
  32. Marangu, J.M. (2020), "Prediction of compressive strength of calcined clay based cement mortars using support vector machine and artificial neural network techniques", J. Sustain. Constr. Mater. Technol., 5(1), 392-398. https://doi.org/10.29187/jscmt.2020.43
  33. Mohsen, M.O., Taha, R., Abu Taqa, A. and Shaat, A. (2017), "Optimum carbon nanotubes' content for improving flexural and compressive strength of cement paste", Constr. Build. Mater., 150, 395-403. https://doi.org/10.1016/j.conbuildmat.2017.06.020
  34. Mohsen, M.O., Alansari, M., Taha, R., Senouci, A. and Abutaqa, A. (2020), "Impact of CNTs' treatment, length and weight fraction on ordinary concrete mechanical properties", Constr. Build. Mater., 264, 120698. https://doi.org/10.1016/j.conbuildmat.2020.120698
  35. Muller, P., Novak, J. and Holan, J. (2019), "Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature", J. Build. Eng., 26, 100906. https://doi.org/10.1016/j.jobe.2019.100906
  36. Najjar, Y.M. and Huang, C. (2007), "Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach", Comput. Geotech., 34(5), 346-361. https://doi.org/10.1016/j.compgeo.2007.06.006
  37. Nazari, A., Hajiallahyari, H., Rahimi, A., Khanmohammadi, H. and Amini, M. (2019), "Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks", Neural Comput. Applicat., 31(2), 733-741. https://doi.org/10.1007/s00521-012-1082-3
  38. Neto, J.D.S.A., Santos, T.A., de Andrade Pinto, S., Dias, C.M.R. and Ribeiro, D.V. (2021), "Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices", Constr. Build. Mater., 271, 121903. https://doi.org/10.1016/j.conbuildmat.2020.121903
  39. Noumowe, A. (2005), "Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200℃", Cement Concrete Res., 35(11), 2192-2198. https://doi.org/10.1016/j.cemconres.2005.03.007
  40. Onal, O. and Ozturk, A.U. (2010), "Artificial neural network application on microstructure-compressive strength relationship of cement mortar", Adv. Eng. Software, 41(2), 165-169. https://doi.org/10.1016/j.advengsoft.2009.09.004
  41. Peng, G.F., Yang, W.W., Zhao, J., Liu, Y.F., Bian, S.H. and Zhao, L.H. (2006), "Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures", Cement Concrete Res., 36(4), 723-727. https://doi.org/10.1016/j.cemconres.2005.12.014
  42. Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  43. Sadowski, L. and Hola, J. (2015), "ANN modeling of pull-off adhesion of concrete layers", Adv. Eng. Software, 89, 17-27. https://doi.org/10.1016/J.ADVENGSOFT.2015.06.013
  44. Sedaghatdoost, A. and Behfarnia, K. (2018), "Mechanical properties of Portland cement mortar containing multi-walled carbon nanotubes at elevated temperatures", Constr. Build. Mater., 176, 482-489. https://doi.org/10.1016/j.conbuildmat.2018.05.095
  45. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
  46. Sikora, P., Abd Elrahman, M., Chung, S.Y., Cendrowski, K., Mijowska, E. and Stephan, D. (2019), "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature", Cement Concrete Compos., 95, 193-204. https://doi.org/10.1016/j.cemconcomp.2018.11.006
  47. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  48. Szelag, M. (2019a), "Evaluation of cracking patterns of cement paste containing polypropylene fibers", Compos. Struct., 220, 402-411. https://doi.org/10.1016/j.compstruct.2019.04.038
  49. Szelag, M. (2019b), "Properties of cracking patterns of multi-walled carbon nanotube-reinforced cement matrix", Materials, 12(18), 2942. https://doi.org/10.3390/ma12182942
  50. Szelag, M. (2020), "Evaluation of cracking patterns in cement composites-From basics to advances: A review", Mater., 13(11), 2490. https://doi.org/10.3390/MA13112490
  51. Wang, B., Han, Y. and Liu, S. (2013), "Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites", Constr. Build. Mater., 46, 8-12. https://doi.org/10.1016/j.conbuildmat.2013.04.014
  52. Yasarer, H. and Najjar, Y.M. (2014), "Characterizing the permeability of Kansas concrete mixes used in PCC pavements", Int. J. Geomech., 14(4), 04014017. https://doi.org/10.1061/(asce)gm.1943-5622.0000362
  53. Zhang, J. and Liu, X. (2018), "Dispersion performance of carbon nanotubes on ultra-light foamed concrete", Processes, 6(10), 194. https://doi.org/10.3390/pr6100194
  54. Zhang, L.W., Kai, M.F. and Liew, K.M. (2017), "Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures", Compos. Part A: Appl. Sci. Manuf., 95, 286-293. https://doi.org/10.1016/j.compositesa.2017.02.001
  55. Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., Int. J., 26(6), 753-763. https://doi.org/10.12989/sss.2020.26.6.753