참고문헌
- Ahmed, H., Bogas, J.A., Guedes, M. and Pereira, M.F.C. (2018), "Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites", Magaz. Concrete Res., 71, 408-423. https://doi.org/10.1680/jmacr.17.00562
- Alavi, R. and Mirzadeh, H. (2012), "Modeling the compressive strength of cement mortar nano-composites", Computers and Concrete, 10(1), 49-57. https://doi.org/10.12989/cac.2012.10.1.049
- Alrekabi, S., Cundy, A.B., Lampropoulos, A., Whitby, R.L.D. and Savina, I. (2017), "Effect of high-intensity sonication on the dispersion of carbon-based nanofilaments in cementitious composites, and its impact on mechanical performance", Mater. Des., 136, 223-237. https://doi.org/10.1016/j.matdes.2017.09.061
- Amancio, F.A., De Carvalho Rafael, M.F., De Oliveira Dias, A.R. and Bezerra Cabral, A.E. (2018), "Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures", Procedia Struct. Integr., 11, 91-98. https://doi.org/10.1016/j.prostr.2018.11.013
- Amin, M.S., El-Gamal, S.M.A. and Hashem, F.S. (2015), "Fire resistance and mechanical properties of carbon nanotubes - Clay bricks wastes (Homra) composites cement", Constr. Build. Mater., 98, 237-249. https://doi.org/10.1016/j.conbuildmat.2015.08.074
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M. G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integr., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122
- Aquino, K.P.S., Caisip, J.S., Placiente, A.N.I., Reyes, E.C. and Calilung, M.G.V. (2017), "Application of artificial neural network in determination of sorptivity model of concrete with varying percent of replacement of sand to copper slag", HNICEM 2017 - Proceedings of the 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Manila, Philippines, December, pp. 1-5. https://doi.org/10.1109/HNICEM.2017.8269537
- Baloch, W.L., Khushnood, R.A. and Khaliq, W. (2018a), "Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures", Constr. Build. Mater., 185, 44-56. https://doi.org/10.1016/j.conbuildmat.2018.07.051
- Baloch, W.L., Khushnood, R.A., Memon, S.A., Ahmed, W. and Ahmad, S. (2018b), "Effect of elevated temperatures on mechanical performance of normal and lightweight concretes reinforced with carbon nanotubes", Fire Technol., 54(5), 1331-1367. https://doi.org/10.1007/s10694-018-0733-z
- Bani-Hani, K.A., Irshidat, M.R., Al-Rub, R.K.A., Al-Nuaimi, N.A. and Talleh, A.T. (2016), "Strength optimisation of mortar with CNTs and nanoclays", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(5), 340-356. https://doi.org/10.1680/jstbu.14.00106
- Behnood, A. and Ghandehari, M. (2009), "Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures", Fire Safety J., 44(8), 1015-1022. https://doi.org/10.1016/j.firesaf.2009.07.001
- Beyciollu, A., Emirollu, M., Kocak, Y. and Subasi, S. (2015), "Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR", Comput. Concrete, Int. J., 15(1), 89-101. https://doi.org/10.12989/cac.2015.15.1.089
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Software, 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/J.COMPOSITESB.2012.05.054
- Bosnjak, J., Sharma, A. and Grauf, K. (2019), "Mechanical properties of concrete with steel and polypropylene fibres at elevated temperatures", Fibers, 7(2), 9. https://doi.org/10.3390/fib7020009
- Chen, B. and Liu, J. (2004), "Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures", Cement Concrete Res., 34(6), 1065-1069. https://doi.org/10.1016/j.cemconres.2003.11.010
- Culfik, M.S. and Ozturan, T. (2002), "Effect of elevated temperatures on the residual mechanical properties of high-performance mortar", Cement Concrete Res., 32(5), 809-816. https://doi.org/10.1016/S0008-8846(02)00709-3
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
- Eidan, J., Rasoolan, I., Rezaeian, A. and Poorveis, D. (2019), "Residual mechanical properties of polypropylene fiberreinforced concrete after heating", Constr. Build. Mater., 198, 195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209
- Eskandari, H., Nik, M.G. and Eidi, M.M. (2016), "Prediction of Mortar Compressive Strengths for Different Cement Grades in the Vicinity of Sodium Chloride Using ANN", Procedia Eng., 150, 2185-2192. https://doi.org/10.1016/j.proeng.2016.07.262
- Ezziane, M., Kadri, T., Molez, L., Jauberthie, R. and Belhacen, A. (2015), "High temperature behaviour of polypropylene fibres reinforced mortars", Fire Safety J., 71, 324-331. https://doi.org/10.1016/j.firesaf.2014.11.022
- Fidan, S., Oktay, H., Polat, S. and Ozturk, S. (2019), "An Artificial Neural Network Model to Predict the Thermal Properties of Concrete Using Different Neurons and Activation Functions", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/3831813
- Gao, J., Koopialipoor, M., Armaghani, D.J., Ghabussi, A., Baharom, S., Morasaei, A., Shariati, A., Khorami, M. and Zhou, J. (2020), "Evaluating the bond strength of FRP in concrete samples using machine learning methods", Smart Struct. Syst., Int. J., 26(4), 403-418. https://doi.org/10.12989/sss.2020.26.4.403
- Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2020a), "The role of polypropylene microfibers in thermal properties and post-heating behavior of cementitious composites", Materials, 13(12), 2676. https://doi.org/10.3390/ma13122676
- Irshidat, M.R., Al-Nuaimi, N., Salim, S. and Rabie, M. (2020b), "Carbon nanotubes dosage optimization for strength enhancement of cementitious composites", Procedia Manuf., 44, 366-370. https://doi.org/10.1016/j.promfg.2020.02.282
- Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2021a), "Hybrid effect of carbon nanotubes and polypropylene microfibers on fire resistance, thermal characteristics and microstructure of cementitious composites", Constr. Build. Mater., 266, 121154. https://doi.org/10.1016/j.conbuildmat.2020.121154
- Irshidat, M.R., Al-Nuaimi, N. and Rabie, M. (2021b), "Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites", Molecules, 26(4), 850. https://doi.org/10.3390/molecules26040850
- Itani, O.M. and Najjar, Y.M. (2000), "Three-Dimensional Modeling of Spatial Soil Properties via Artificial Neural Networks", Transport. Res. Record: J. Transport. Res. Board, 1709(1), 50-59. https://doi.org/10.3141/1709-07
- Kodur, V.K.R., Yu, B. and Solhmirzaei, R. (2017), "A simplified approach for predicting temperatures in insulated RC members exposed to standard fire", Fire Safety J., 92, 80-90. https://doi.org/10.1016/j.firesaf.2017.05.018
- Maluk, C., Bisby, L. and Terrasi, G.P. (2017), "Effects of polypropylene fibre type and dose on the propensity for heat-induced concrete spalling", Eng. Struct., 141, 584-595. https://doi.org/10.1016/j.engstruct.2017.03.058
- Manzur, T., Yazdani, N., Abul, M. and Emon, B. (2014), "Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites", J. Mater., 2014. https://doi.org/10.1155/2014/960984
- Marangu, J.M. (2020), "Prediction of compressive strength of calcined clay based cement mortars using support vector machine and artificial neural network techniques", J. Sustain. Constr. Mater. Technol., 5(1), 392-398. https://doi.org/10.29187/jscmt.2020.43
- Mohsen, M.O., Taha, R., Abu Taqa, A. and Shaat, A. (2017), "Optimum carbon nanotubes' content for improving flexural and compressive strength of cement paste", Constr. Build. Mater., 150, 395-403. https://doi.org/10.1016/j.conbuildmat.2017.06.020
- Mohsen, M.O., Alansari, M., Taha, R., Senouci, A. and Abutaqa, A. (2020), "Impact of CNTs' treatment, length and weight fraction on ordinary concrete mechanical properties", Constr. Build. Mater., 264, 120698. https://doi.org/10.1016/j.conbuildmat.2020.120698
- Muller, P., Novak, J. and Holan, J. (2019), "Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature", J. Build. Eng., 26, 100906. https://doi.org/10.1016/j.jobe.2019.100906
- Najjar, Y.M. and Huang, C. (2007), "Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach", Comput. Geotech., 34(5), 346-361. https://doi.org/10.1016/j.compgeo.2007.06.006
- Nazari, A., Hajiallahyari, H., Rahimi, A., Khanmohammadi, H. and Amini, M. (2019), "Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks", Neural Comput. Applicat., 31(2), 733-741. https://doi.org/10.1007/s00521-012-1082-3
- Neto, J.D.S.A., Santos, T.A., de Andrade Pinto, S., Dias, C.M.R. and Ribeiro, D.V. (2021), "Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices", Constr. Build. Mater., 271, 121903. https://doi.org/10.1016/j.conbuildmat.2020.121903
- Noumowe, A. (2005), "Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200℃", Cement Concrete Res., 35(11), 2192-2198. https://doi.org/10.1016/j.cemconres.2005.03.007
- Onal, O. and Ozturk, A.U. (2010), "Artificial neural network application on microstructure-compressive strength relationship of cement mortar", Adv. Eng. Software, 41(2), 165-169. https://doi.org/10.1016/j.advengsoft.2009.09.004
- Peng, G.F., Yang, W.W., Zhao, J., Liu, Y.F., Bian, S.H. and Zhao, L.H. (2006), "Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures", Cement Concrete Res., 36(4), 723-727. https://doi.org/10.1016/j.cemconres.2005.12.014
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Sadowski, L. and Hola, J. (2015), "ANN modeling of pull-off adhesion of concrete layers", Adv. Eng. Software, 89, 17-27. https://doi.org/10.1016/J.ADVENGSOFT.2015.06.013
- Sedaghatdoost, A. and Behfarnia, K. (2018), "Mechanical properties of Portland cement mortar containing multi-walled carbon nanotubes at elevated temperatures", Constr. Build. Mater., 176, 482-489. https://doi.org/10.1016/j.conbuildmat.2018.05.095
- Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
- Sikora, P., Abd Elrahman, M., Chung, S.Y., Cendrowski, K., Mijowska, E. and Stephan, D. (2019), "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature", Cement Concrete Compos., 95, 193-204. https://doi.org/10.1016/j.cemconcomp.2018.11.006
- Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Szelag, M. (2019a), "Evaluation of cracking patterns of cement paste containing polypropylene fibers", Compos. Struct., 220, 402-411. https://doi.org/10.1016/j.compstruct.2019.04.038
- Szelag, M. (2019b), "Properties of cracking patterns of multi-walled carbon nanotube-reinforced cement matrix", Materials, 12(18), 2942. https://doi.org/10.3390/ma12182942
- Szelag, M. (2020), "Evaluation of cracking patterns in cement composites-From basics to advances: A review", Mater., 13(11), 2490. https://doi.org/10.3390/MA13112490
- Wang, B., Han, Y. and Liu, S. (2013), "Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites", Constr. Build. Mater., 46, 8-12. https://doi.org/10.1016/j.conbuildmat.2013.04.014
- Yasarer, H. and Najjar, Y.M. (2014), "Characterizing the permeability of Kansas concrete mixes used in PCC pavements", Int. J. Geomech., 14(4), 04014017. https://doi.org/10.1061/(asce)gm.1943-5622.0000362
- Zhang, J. and Liu, X. (2018), "Dispersion performance of carbon nanotubes on ultra-light foamed concrete", Processes, 6(10), 194. https://doi.org/10.3390/pr6100194
- Zhang, L.W., Kai, M.F. and Liew, K.M. (2017), "Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures", Compos. Part A: Appl. Sci. Manuf., 95, 286-293. https://doi.org/10.1016/j.compositesa.2017.02.001
- Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., Int. J., 26(6), 753-763. https://doi.org/10.12989/sss.2020.26.6.753