References
- ABAQUS (2013), Analysis User's Manual, Version 6, Dassault Systemes Simulia, Inc.
- Adewole, K.K. and Teh, L.H. (2017), "Predicting steel tensile responses and fracture using the phenomenological ductile shear fracture model", J. Mater. Civil Eng., 29(12), 06017019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002094.
- AISC (2005), Specifications for Structural Steel Buildings, ANSI/-AISC360-05, Chicago, USA.
- Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
- Barkhori, M., Maleki, S., Mirtaheri, M., Nazeryan, M. and Kolbadi, S.M.S. (2020), "Investigation of shear lag effect on tension members fillet-welded connections consisting of single and double channel sections", Struct. Eng. Mech., 74(3), 445-455. http://doi.org/10.12989/sem.2020.74.3.445.
- Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial neural network", Struct. Eng. Mech., 29(1), 77-89. http://doi.org/10.12989/sem.2008.29.1.077.
- Chen, S., Qian, X. and Ahmed, A. (2016), "Cleavage fracture assessment for surface-cracked plates fabri-cated from high strength steels", Eng. Fract. Mech., 161, 1-20. https://doi.org/10.1016/j.engfracmech.2016.04.039.
- Coelho, A.M.G. and Bijlaard, F.S.K. (2007), "Experimental behaviour of high strength steel endplate con-nections", J. Constr. Steel Res., 63(9), 1228-1240. https://doi.org/10.1016/j.jcsr.2006.11.010.
- Daidie, A., Chakhari, J. and Zghal, A. (2007), "Numerical model for bolted T-stubs with two bolt rows", Struct. Eng. Mech., 26(3), 343-361. http://doi.org/10.12989/sem.2007.26.3.343.
- Dusicka, P. and Lewis, G. (2010), "High strength steel bolted connections with filler plates", J. Constr. Steel Res., 66(1), 75-84. https://doi.org/10.1016/j.jcsr.2009.07.017.
- Easterling, W.S. and Gonzales, L. (1993), "Shear lag effects in steel tension members", AISC J. Eng., 30(2), 77-89.
- Fang, C., Lam, A.C. and Yam, M.C. (2013), "Influence of shear lag on ultimate tensile capacity of angles and tees", J. Constr. Steel Res., 84, 49-61. https://doi.org/10.1016/j.jcsr.2013.02.006.
- Gaylord, E.H. Jr, Gaylord, C.N. and Stallmeyer, J.E. (1992), Design of Steel Structures, 3rd Edition, McGrow Hill, New York.
- Hui, G. (2005), "Shear lag effects on welded hot-rolled steel channels in tension", Master of Science Thesis, University of Alberta, Canada.
- Humphries, M.J.R. and Birkemoe, P.C. (2004), "Shear lag effects in fillet-welded tension connections of channels and similar shapes", Proceedings of the ECCS/AISC Workshop on Connections in Steel Structures V: Innovative Steel Connections, Amsterdam, June.
- Ke, K. and Chen, Y. (2016), "Seismic performance of MRFs with high strength steel main frames and EDBs", J. Constr. Steel Res., 126, 214-228. https://doi.org/10.1016/j.jcsr.2016.07.003.
- Kiymaz, G. and Seckin, E. (2014), "Behavior and design of stainless-steel tubular member welded end connections", Steel Compos. Struct., 17(3), 253-269. http://doi.org/10.12989/scs.2014.17.3.253.
- Luo, D., Zhang, Z. and Li, B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. http://doi.org/10.12989/scs.2019.31.1.027.
- Marsh, C. (1969), "Single angles in tension and compression", J. Struct. Div., 95, 1043-1049. https://doi.org/10.1061/JSDEAG.0006144.
- Mirtaheri, S.M., Nazeryan, M., Bahrani, M.K., Nooralizadeh, A., Montazerian, L. and Naserifard, M. (2017), "Local and global buckling condition of all-steel buckling restrained braces", Steel Compos. Struct., 23(2), 217-228. http://doi.org/10.12989/scs.2017.23.2.217.
- Moze, P. and Beg, D. (2010), "High strength steel tension splices with one or two bolts", J. Constr. Steel Res., 66(8), 1000-1010. https://doi.org/10.1016/j.jcsr.2010.03.009.
- Munse, W.H. and Chesson Jr, E. (1963), "Riveted and bolted joints: net section design", J. Struct. Div., 89(1), 107-126. https://doi.org/10.1061/JSDEAG.0000869.
- Orbison, J.G., Wagner, M.E. and Fritz, W.P. (1999), "Tension plane behavior in single-row bolted connections subject to block shear", J. Constr. Steel Res., 49(3), 225-239. https://doi.org/10.1016/S0143-974X(98)90172-9.
- Qian, X., Li, Y. and Zhao, O. (2013), "Ductile tearing assessment of high-strength steel X-joints under in-plane bending", Eng. Fail. Anal., 28(2), 176-191. https://doi.org/10.1016/j.engfailanal.2012.10.017.
- Wang, J., Afshan, S. and Gardner, L. (2017), "Axial behaviour of prestressed high strength steel tubular members", J. Constr. Steel Res., 133, 547-563. https://doi.org/10.1016/j.jcsr.2017.03.002.
- Zahiri-Hashemi, R., Kheyroddin, A. and Farhadi, B. (2013), "Effective number of mega-bracing, in order to minimize shear lag", Struct. Eng. Mech., 48(2), 173-193. http://doi.org/10.12989/sem.2013.48.2.173.
- Zhang, J., Han, B., Xie, H., Yan, W., Li, W. and Yu, J. (2021), "Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load", Steel Compos. Struct., 39(4), 435. http://doi.org/10.12989/scs.2021.39.4.435.
- Zhong, X., Zhang, T., Shu, X. and Xu, H. (2017), "Shear-lag behavior of prestressed concrete box-girder bridges during balanced cantilever construction", Adv. Concrete Constr., 5(5), 469. http://doi.org/10.12989/acc.2017.5.5.469.