Acknowledgement
This work was supported by Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through (Export Promotion Technology Development Program), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number 618002-05).
References
- Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 2016;48:2067-80. https://doi.org/10.1007/s00726-016-2254-8
- Shah AM, Wang Z, Ma J. Glutamine metabolism and its role in immunity, a comprehensive review. Animals 2020;10:326. https://doi.org/10.3390/ani10020326
- Antonio J, Street C. Glutamine: A potentially useful supplement for athletes. Can J Appl Physiol 1999;24:1-14. https://doi.org/10.1139/h99-001
- Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 1999;27:97-110. https://doi.org/10.2165/00007256-199927020-00003
- Akbarnezhad A, Ravasi AA, Aminian Razavi TD, Nourmohammadi I. The effect of creatine and glutamine supplements on athletic performance in elite wrestlers after one acute period of weight losing. Harakat 2006;27:173-88.
- Ramezani Ahmadi A, Rayyani E, Bahreini M, Mansoori A. The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials. Clin Nutr 2019;38:1076-91. https://doi.org/10.1016/j.clnu.2018.05.001
- Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009;37:1-17. https://doi.org/10.1007/s00726-009-0269-0
- Wu G, Bazer FW, Johnson GA, et al. Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production. J Anim Sci 2011;89:2017-30. https://doi.org/10.2527/jas.2010-3614
- Kim YS, Lee JS, Lee YS, et al. Effect of glutamine on heat-shock protein beta 1 (HSPB1) expression during myogenic differentiation in bovine embryonic fibroblast cells. J Food Sci Biotechnol 2018;27:829-35. https://doi.org/10.1007/s10068-018-0309-1
- Lobley G, Hoskin S, McNeil CJ. Glutamine in animal science and production. J Nutr 2001;131:2525S-31S. https://doi.org/10.1093/jn/131.9.2525S
- Syamsi AN, Waldi L, Widodo HS, Harwanto. Branched chain volatile fatty acids profile of rumen fluids supplemented by different meal protein sources and protein-energy synchronization index. IOP Conference Series: Earth Environ Sci 2019; 372:012060. https://doi.org/10.1088/1755-1315/372/1/012060
- Kim JY, Ghassemi Nejad J, Park JY, et al. In vivo evaluation of garlic (Allium sativum) supplementation to rice straw-based diet on mitigation of CH4 and CO2 emissions and blood profiles using crossbreed rams. J Sci Food Agric 2018;98:5197-204. https://doi.org/10.1002/jsfa.9055
- Warner ACI. The breakdown of asparagine, glutamine, and other amides by microorganisms from the sheep's rumen. Aust J Biol Sci 1964;17:170-82. https://doi.org/10.1071/BI9640170
- Hoshino S, Sarumaru K, Morimoto K. Ammonia anabolism in ruminants. J Dairy Sci 1966,49:1523-8. https://doi.org/10.3168/jds.S0022-0302(66)88130-4
- Chalupa W, Clark J, Opliger P, Lavker R. Ammonia metabolism in rumen bacteria and mucosa from sheep fed soy protein or urea. J Nutr 1970;100:161-9. https://doi.org/10.1093/jn/100.2.161
- Moss AR, Jouany JP, Newbold J. Methane production by ruminants: Its contribution to global warming. Ann Zootech 2000;49:231-53. https://doi.org/10.1051/animres:2000119
- Apajalahti J, Vienola K, Raatikainen K, Holder V, Moran CA. Conversion of branched-chain amino acids to corresponding isoacids - an in vitro tool for estimating ruminal protein degradability. Front Vet Sci 2019;6:311. https://doi.org/10.3389/fvets.2019.00311
- Zhang HL, Chen Y, Xu XL, Yang YX. Effects of branched-chain amino acids on in vitro ruminal fermentation of wheat straw. Asian-Australas J Anim Sci 2013,26:523-8. https://doi.org/10.5713/ajas.2012.12539
- McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J 1948;43:99-109. https://doi.org/10.1042/bj0430099
- Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130
- Erwin ES, Marco GJ, Emery EM. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci 1961;44:1768-71. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
- Srinivas B, Gupta BN. Rumen fermentation, bacterial and total volatile fatty acid (TVFA) production rates in cattle fed on urea-molasses-mineral block licks supplement. Anim Feed Sci Technol 1997;65:275-86. https://doi.org/10.1016/S0377-8401(96)01062-0
- Wang MZ, Wang HR, Cao HC, Li GX, Zhang J. Effects of limiting amino acids on rumen fermentation and microbial community in vitro. Agric Sci China 2008;7:1524-31. https://doi.org/10.1016/S1671-2927(08)60412-5
- Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G. Ruminal microbes of adult steers do not degrade extracellular L-citrolline and have limited ability to metabolize extracellular L-glutamate. J Anim Sci 2019;97:3611-6. https://doi.org/10.1093/jas/skz227
- Sawers RG. Amino acid degradation. eLS. Chichester, UK: John Wiley & Sons Ltd.; 2015. pp. 1-11. https://chem.libretexts.org/@go/page/234048
- Argyle JL, Baldwin RL. Effects of amino acids and peptides on rumen microbial growth yields. J Dairy Sci 1989;72:2017-27. https://doi.org/10.3168/jds.S0022-0302(89)79325-5
- Lopez S. In vitro and in situ techniques for estimating digestibility. In: Dijkstra J, Forbes JM, France J, editors. Quantitative aspects of ruminant digestion and metabolism. Wallingford, UK: CABI Publishing; 2005. pp. 87-121. https://doi.org/10.1079/9780851998145.0049
- Van Soest PJ. Nutritional ecology of the ruminant. 2nd edn. NY, USA: Cornell University Press; 1994. https://www.jstor.org/stable/10.7591/j.ctv5rf668
- Anassori E, Dali-Naghadeh B, Pirmohammadi R, Hadian M. Changes in blood profile in sheep receiving raw garlic, garlic oil or monensin. J Anim Physiol Anim Nutr 2015;99:114-22. https://doi.org/10.1111/jpn.12189
- Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010;160:1-22. https://doi.org/10.1016/j.anifeedsci.2010.07.002
- Pengpeng W, Tan Z. Ammonia assimilation in rumen bacteria: a review. Anim Biotechnol 2013;24:107-28. https://doi.org/10.1080/10495398.2012.756402
- Buckel W. Usual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol 2001;57:263-73. https://doi.org/10.1007/s002530100773
- Paster BJ, Russell JB, Yang CMJ, Chow JM, Woese CR, Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol 1993;43:107-10. https://doi.org/10.1099/00207713-43-1-107
- Newbold CJ, Lassalas B, Jouany JP. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 1995;21:230-4. https://doi.org/10.1111/j.1472-765x.1995.tb01048.x
- Kingston-Smith AH, Davies TE, Edwards J, Gay A, Mur LAJ. Evidence of a role for foliar salicylic acid in regulating the rate of post-ingestive protein breakdown in ruminants and contributing to landscape pollution. J Exp Bot 2012;63:3243-55. https://doi.org/10.1093/jxb/ers048
- Russell JB, Mantovani HC. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J Mol Microbiol Biotechnol 2002;4:347-55.
- Megias MD, Hernandez F, Madrid J, Martinez-Teruel A. Feeding value, in vitro digestibility and in vitro gas production of different by-products for ruminant nutrition. J Sci Food Agric 2002;82:567-72. https://doi.org/10.1002/jsfa.1081
- Raab L, Cafantaris B, Jilg T, Menke K. Rumen protein degradation and biosynthesis: 1. A new method for determination of protein degradation in rumen fluid in vitro. Br J Nutr 1983;50:569-82. https://doi.org/10.1079/bjn19830128
- Stiles DA, Bartley EE, Meyer RM, Deyoe CW, Pfost HB. Effect of expansion-processed mixture of grain and urea (Starea) on rumen metabolism in cattle and on urea toxicity. J Dairy Sci 1970;53:1436-47. https://doi.org/10.3168/jds.S0022-0302(70)86412-8
- Zain M, Sutardi T, Suryahadi, Ramli N. Effect of defaunation and supplementation methionine hydroxy analogue and branched chain amino acid in growing sheep diet based on palm press fiber ammoniated. Pak J Nutr 2008;7:813-6. https://doi.org/10.3923/pjn.2008.813.816
- Suryapratama W. Suhartati FM. Effect of supplementation of branched chain fatty acid on colony of ruminal bacteria and cell of protozoa. Anim Prod 2005;11:129-34. https://doi.org/10.1017/S0003356100026714
- Yang CMJ. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J Dairy Sci 2002;85:1183-90. https://doi.org/10.3168/jds.S0022-0302(02)74181-7
- Chen G, Sniffen CJ, Russell JB. Fermentation of peptides and amino acids by monensin sensitive ruminal Peptostreptococcus. Appl Environ Microbiol 1988;54:2742-9. https://doi.org/10.1128/aem.54.11.2742-2749.1988