Acknowledgement
The authors are grateful for the support by Science and Technology Plan of the College of Food Science and Engineering, Inner Mongolia Agricultural University (SPKX201904), Inner Mongolia Natural Science Foundation of China (2021MS03012).
References
- Pette D, Staron RS. Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 2001;115:359-72. https://doi.org/10.1007/s004180100268
- Fazarinc G, Vrecl M, Skorjanc D, Cehovin T, Candek-Potokar M. Dynamics of myosin heavy chain isoform transition in the longissimus muscle of domestic and wild pigs during growth: a comparative study. Animal 2017;11:164-74. https://doi.org/10.1017/S1751731116001312
- Lefaucheur L. A second look into fibre typing - Relation to meat quality. Meat Sci 2010;84:257-70. https://doi.org/10.1016/j.meatsci.2009.05.004
- Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z. Arginine promotes slow myosin heavy chain expression via akirin2 and the AMP-activated protein kinase signaling pathway in porcine skeletal muscle satellite cells. J Agric Food Chem 2018;66:4734-40. https://doi.org/10.1021/acs.jafc.8b00775
- Wang CC, Liu WB, Huang YY, et al. Dietary DHA affects muscle fiber development by activating AMPK/Sirt1 pathway in blunt snout bream (Megalobrama amblycephala). Aqua culture 2020;518:734835. https://doi.org/10.1016/j.aquaculture.2019.734835
- Park MY, Ryu YC, Kim CN, Ko KB, Kim JM. Evaluation of myosin heavy chain isoforms in biopsied longissimus thoracis muscle for estimation of meat quality traits in live pigs. Animals (Basel) 2019;10:9. https://doi.org/10.3390/ani10010009
- Vrecl M, Cotman M, Ursic M, Candek-Potokar M, Fazarinc G. Age-dependent expression of MyHC isoforms and lipid metabolism-related genes in the longissimus dorsi muscle of wild and domestic pigs. Animals (Basel) 2018;9:10. https://doi.org/10.3390/ani9010010
- Wakamatsu J, Akter M, Honma F, Hayakawa T, Kumura H, Nishimura T. Optimal pH of zinc protoporphyrin IX formation in porcine muscles: effects of muscle fiber type and myoglobin content. Lwt-Food Sci Technol 2019;101:599-606. https://doi.org/10.1016/j.lwt.2018.11.040
- Yu QP, Feng DY, He XJ, et al. Effects of a traditional Chinese medicine formula and its extraction on muscle fiber characteristics in finishing pigs, porcine cell proliferation and isoforms of myosin heavy chain gene expression in myocytes. Asian-Australas J Anim Sci 2017;30:1620-32. https://doi.org/10.5713/ajas.16.0872
- Chen XL, Luo YL, Huang ZQ, Liu GM, Zhao H. Akirin2 promotes slow myosin heavy chain expression by CaN/NFATc1 signaling in porcine skeletal muscle satellite cells. Oncotarget 2017;8:25158-66. https://doi.org/10.18632/oncotarget.15374
- Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493-5. https://doi.org/10.1083/jcb.9.2.493
- Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate promotes myoblast differentiation and myotube hypertrophy via a pathway involving MyoD in vitro and enhances muscle regeneration in vivo. Int J Mol Sci 2018;19:3649. https://doi.org/10.3390/ijms19113649
- Han S, Cui C, Wang Y, et al. FHL3 negatively regulates the differentiation of skeletal muscle satellite cells in chicken. 3 Biotech 2019;9:206. https://doi.org/10.1007/s13205-019-1735-3
- Lewandowski D, Dubinska-Magiera M, Migocka-Patrzalek M, et al. Everybody wants to move-evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2020;104:3-13. https://doi.org/10.1016/j.semcdb.2019.10.009
- Ghanim H, Dhindsa S, Batra M, et al. Effect of testosterone on FGF2, MRF4, and myostatin in hypogonadotropic hypogonadism: relevance to muscle growth. J Clin Endocrinol Metab 2019;104:2094-102. https://doi.org/10.1210/jc.2018-01832
- Lewandowski D, Dubinska-Magiera M, Garbiec A, Daczewska M. Primary myogenesis in the sand lizard (Lacerta agilis) limb bud. Dev Genes Evol 2019;229(5-6):147-59. https://doi.org/10.1007/s00427-019-00635-7
- Churova MV, Meshcheryakova OV, Ruchev M, Nemova NN. Age- and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L. Comp Biochem Physiol B Biochem Mol Biol 2017;211:16-21. https://doi.org/10.1016/j.cbpb.2017.04.001
- Pin CL, Konieczny SF. A fast fiber enhancer exists in the muscle regulatory factor 4 gene promoter. Biochem Biophys Res Commun 2002;299:7-13. https://doi.org/10.1016/S0006-291X(02)02571-8
- Ekmark M, Rana ZA, Stewart G, Grahame Hardie D, Gundersen K. De-phosphorylation of myod is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol 2007;584:637-50. https://doi.org/10.1113/jphysiol.2007.141457
- Bakhsh A, Hwang YH, Joo ST. Effect of slaughter age on muscle fiber composition, intramuscular connective tissue, and tenderness of goat meat during post-mortem time. Foods 2019;8:571. https://doi.org/10.3390/foods8110571
- Freshney RI. Culture of animal cells: a manual of basic techniques. Beijing, China: China Science Publishing; 2008. pp. 246-60.
- Su R, Wang B, Zhang M, et al. Effects of energy supplements on the differentiation of skeletal muscle satellite cells. Food Sci Nutr 2021;9:357-66. https://doi.org/10.1002/fsn3.2001
- Subi S, Lee SJ, Shiwani S, Singh NK. Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats. Asian-Australas J Anim Sci 2018;31:439-48. https://doi.org/10.5713/ajas.17.0257
- Li Y, Li J, Zhang L, et al. Effects of dietary energy sources on post mortem glycolysis, meat quality and muscle fibre type transformation of finishing pigs. PLoS One 2015;10:e0131958. https://doi.org/10.1371/journal.pone.0131958
- Ramos-Pinto L, Lopes G, Sousa V, et al. Dietary creatine supplementation in gilthead seabream (Sparus aurata) increases dorsal muscle area and the expression of myod1 and capn1 genes. Front Endocrinol (Lausanne) 2019;10:161. https://doi.org/10.3389/fendo.2019.00161
- Chu WY, Chen DX, Li YL, Wu P, Zhang JS, Liu L. Muscle fiber differentiation and growth patterns during hyperplasia and hypertrophy in the ricefield eel regulated by myogenic regulatory factors. N Am J Aquac 2018;80:180-6. https://doi.org/10.1002/naaq.10025
- Wang Y, Xiao X, Wang LJ. In vitro characterization of goat skeletal muscle satellite cells. Anim Biotechnol 2020;31:115-21. https://doi.org/10.1080/10495398.2018.1551230
- Gao W, Sun W, Su R, et al. Sheep YAP1 temporal and spatial expression trend and its relation with MyHCs expression. Genet Mol Res 2016;15:gmr.15027260. https://doi.org/10.4238/gmr.15027260
- Mashima D, Oka Y, Gotoh T, et al. Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers. Anim Sci J 2019;90:604-9. https://doi.org/10.1111/asj.13185
- Zhu LN, Ren Y, Chen JQ, Wang YZ. Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Gene 2013;532:246-52. https://doi.org/10.1016/j.gene.2013.09.028
- Shen LY, Luo J, Lei HG, et al. Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression. Genet Mol Res 2015;14:14366-78. https://doi.org/10.4238/2015.November.13.22
- Schonfeldt HC, Naude RT, Bok W, Heerden SMV, Smi R, Boshoff E. Flavor- and tenderness-related quality characteristics of goat and sheep meat. Meat Sci 1993;34:363-79. https://doi.org/10.1016/0309-1740(93)90084-U