Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C2003445).
References
- K. Goebel, B. Saha, A. Saxena, J. R. Celaya, and J. P. Christophersen, "Prognostics in battery health management," IEEE Instrum. Meas. Mag. Vol. 11, No. 4, pp. 33-40, Aug. 2008. https://doi.org/10.1109/MIM.2008.4579269
- D. Wang, J. Liu, and R. Srinivasan, "Data-driven soft sensor approach for quality prediction in a refining process," IEEE Trans. Ind. Informat, Vol. 6, No. 1, pp. 11-17, Feb. 2010. https://doi.org/10.1109/TII.2009.2025124
- T. R. Ashwin, Y. M. Chung, and J. Wang, "Capacity fade modelling of lithium-ion battery under cyclic loading conditions," Journal of Power Sources, Vol. 328, pp. 586-598, Oct. 2016. https://doi.org/10.1016/j.jpowsour.2016.08.054
- B. Mo, J. Yu, D. Tang, H. Liu, and J. Yu, "A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter," in Proc. IEEE Int. Conf. Prognostics Health Manage. (ICPHM), pp. 1-5, Jun. 2016.
- H. Zhang, Q. Miao, X. Zhang, and Z. Liu, "An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction," Microelectron. Rel., Vol. 81, pp. 288-298, Feb. 2018. https://doi.org/10.1016/j.microrel.2017.12.036
- W. Waag, C. Fleischer, and D. U. Sauer, "Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles," Journal of Power Sources, Vol. 258, pp. 321-339, 2014. https://doi.org/10.1016/j.jpowsour.2014.02.064
- L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang, "Remaining useful life prediction for lithium-ion battery: A deep learning approach," IEEE Access, Vol. 6, pp. 50587-50598, 2018. https://doi.org/10.1109/access.2018.2858856
- X. Pang, R. Huang, J. Wen, Y. Shi, J. Jia, and J. Zeng. "A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon," Energies, No. 12, pp. 2247, 2019. https://doi.org/10.3390/en12122247
- B. Saha and K. Goebel, "Battery data set," NASA AMES Prognostics Data Repository, 2007.
- G. Rilling, P. Flandrin, and P. Goncalves, "On empirical mode decomposition and its algorithms," in Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process. (NSIP), Vol. 3, pp. 8-11, 2003.
- Y. Zhang, R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries," IEEE Trans. Veh. Technol., Vol. 67, No. 7, pp. 5695-5705, Jul. 2018. https://doi.org/10.1109/tvt.2018.2805189
- J. Qu, F. Liu, Y. Ma, and J. Fan, "A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery," IEEE Access, Vol. 7, pp. 87178-87191, 2019. https://doi.org/10.1109/access.2019.2925468
- S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, "Face recognition: A convolutional neural-network approach," IEEE Transactions on Neural Networks, Vol. 8, No. 1, pp. 98-113, Jan. 1997. https://doi.org/10.1109/72.554195