Acknowledgement
This research was possible with the research funding from the Nebraska Department of Transportation under contract No. 26-1121-4036-001 and 26-1121-4052-001.
References
- Afolabi, A., Francis, F.A. and Adejompo, F. (2012), "Assessment of health and environmental challenges of cement factory on Ewekoro community residents, Ogun State, Nigeria", Am. J. Human Ecology, 1(2), 51-57. https://doi.org/10.11634/21679622150479.
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arabian J. Geosci., 9(371), https://doi.org/10.1007/s12517-016-2366-1.
- Canakci, H., Aziz, A. and Celik, F. (2015), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. https://doi.org/10.12989/gae.2015.8.1.067.
- Ceylan, H., Gopalakrishnan, K. and Kim, S. (2010), "Soil stabilization with bioenergy coproduct", TRR, 2186, 130-137. https://doi.org/10.3141/2186-14.
- Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
- Chang, I., Im, J., Lee, S.K. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015a), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Kwon, Y.M., and Cho, G.C. (2021), "Effects of pore-fluid chemistry on the undrained shear strength of Xanthan Gum Biopolymer-treated clays", JGGE, 147(11), 06021013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002652.
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015c), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
- Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", JGGE, 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.
- Clifton, W. (1986), Chemical Grouts for Potential Use in Bureau of Reclamation Projects, GR-86-13, USBR, 48.
- DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
- Digitalatlas (2020), https://digitalatlas.cose.isu.edu/geog/native/text/history.htm, Access Date: June 8, 2020
- Fauriel, S. and Laloui, L. (2012), "A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils", Comput. Geotech., 46, 104-120. https://doi.org/10.1016/j.compgeo.2012.05.017.
- Ferrero, C., Martino, M. and Zaritzky, N. (1993), "Stability of frozen starch pastes: Effect of freezing, storage and Xanthan Gum addition", J. Food Process. Preservation, https://doi.org/10.1111/j.1745-4549.1993.tb00839.x.
- Ferrero, C., Martino, M. and Zaritzky, N. (1994), "Influence of Xanthan Gum addition on frozen starch paster properties", Food Hydrocolloids, 461-466. https://doi.org/10.1007/978-1-4615-2486-1_70.
- Ham, S.M., Chang, I., Noh, D.H. and Kwon, T.H. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", Geotech. Geoenviron. Eng., 144(7), 06018004-1-6. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
- Howard, I.L., Sullivan, W.G., Anderson, B.K., Shannon, J. and Cost, T. (2013), Design and Construction Control Guidance for Chemically Stabilized Pavement Base Layers, FHWA/MS-DOT-RD-13-206, 162.
- Im, J., Chang, I., and Cho, G.C. (2021), "Effects of malonic acid crosslinked starch for soil strength improvement", Transport. Geotech., 31, Article 100653.
- Jiang, X., Rutherford, C., Ikuma, K. and Cetin, B. (2018), Use of Biocementation for Slope Stabilization of Levees, Part of DTRT13-G-UTC37, Iowa State University, Ames, IA, 30.
- Karol, R.H. and Berardinelli, C. (2003), Chemical grouting and soil stabilization. CRC Press, 583.
- Khan, M.A. (2016), Impact of Wet-dry Cycle on Mechanical Properties of Expansive Clay Under Low Overburden Stress. MS Thesis, University of Texas Airlington, 80.
- Kierulf, C. (1988), The Thermal Stability of Xanthan, Thesis for Master of Philosophy, University of Edinburgh, 111.
- Kim K.W., Kang K.Y. and Song C.R. (1991), "Causes and measures for un-hardening phenomenon of soil cement mixing wall in organic soil", J. Korean Soc. Eng. Geol., 1(1), 11-18.
- King, H.M. (2021), Geology.com, https://geology.com/stories/13/ammolite/ (Access Date: Oct. 27, 2021)
- Kutzner, C. (1996), Grouting of Rock and Soil. Netherland: Balkema, 271.
- Larson, A. (2011), Sustainability, innovation, and entrepreneurship. The Saylor Foundation, 564.
- Lo, C.R. and Ramsden, L. (2000), "Effects of Xanthan and Glactomannan on the freeze/thaw properties of starch gels", Food/Nahrung, https://doi.org/10.1002/1521-3803(20000501)44:3<211::AID-FOOD211>3.0.CO;2-O.
- Martinez, B.C., DeJong, J.T. and Ginn, T.R. (2014), "Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow", Comput. Geotech., 58, 1-13. https://doi.org/10.1016/j.compgeo.2014.01.013.
- Mason, J.A. (2001), "Transport direction of peoria loess in nebraska and implications for loess sources on the central great plains", Quaternary Res., 56, 79-86. https://doi.org/10.1006/qres.2001.2250.
- Mortensen, B.M., Haber, M.J., DeJong, J.T., Caslake, L.F. and Nelson, D.C. (2011), "Effects of environmental factors on microbial induced calcium carbonate precipitation", Appl. Microbiology, 111(2), 338-349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
- Naeimi, M. and Haddad, A. (2020), "Environmental impacts of chemical and microbial grouting", Environ. Sci. Pollut. R., 27, 2264-2272. https://doi.org/10.1007/s11356-019-06614-9.
- Nitta, Y. (2005), Gelation and Geo Properties of Gellan Gum and Xyloglucan, Dept. of Food and Human health Science, Osaka City University, 150.
- Osman, U.Y. (1960), Effect of leaching on the strength properties of a hydrated lime-cement stabilized soil, Masters Theses 2794, Missouri S&T University, 84.
- Pabian, R.K. (1970), Record in Rock: A Hanbook of the Invertebrate Fossils of Nebraska, Conservation and Survey Division. 1. P.7.
- Schneider, M, Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-Present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.
- Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C., and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method details and strengthening effect verification", Constr. Build. Mater., 307. https://doi.org/10.1016/j.conbuildmat.2021.124983.
- Song, C.R., Kim, Y.R., Bahmyari, H., Bitar, L. and Amelian, S. (2019), Nebraska Specific Slope Design Manual, Report submitted to Nebraska Department of Transportation, 176.
- Stark, T. D. and Eid, H. T. (1994), "Drained residual strength of cohesive soils", J. Geotech. Eng. - ASCE, 120(5), 856-871. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(856)
- Stark, T.D., Choi, H. and McCone, S. (2005), "Drained shear strength parameters for analysis of landslides", JGGE, ASCE, 131(5), 575-588. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(575).
- Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA treated sand for geotechnical application: Microstructure analysis and rapid strength development", J. Mater. Civil Eng. -ASCE, 30(2), https://doi/10.1061/(ASCE)MT.1943-5533.0002523.
- Sullivan, W.G., Howard, I.L. and Anderson, B.K. (2015), "Development of equipment for compacting soil-cement into plastic molds for design and quality control purposes", TRR 2511, 102-111. https://doi.org/10.3141/2511-12.
- UNL Conservation and Survey Div. (2020), "Distribution and thickness of glacial till in Nebraska", Conserv. Survey Division, 297. https://digitalcommons.unl.edu/conservationsurvey/297.
- Van der Sloot, H.A. (2000), "Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling", Cement Concrete Res., 30(7), 1079-1096. https://doi.org/10.1016/S0008-8846(00)00287-8.
- Van Ngoc, P., Turner, B., Huang, J. and Kelly, R. (2017), "Long-term strength of soil-cement columns in coastal area", Soils Foundations, 57(4), 645-654, https://doi.org/10.1016/j.sandf.2017.04.005.
- Weideborg, M., Kallqvist, T., Odegard, K.E., Sverdrup, L.E. and Vik, E.A. (2001), "Environmental risk assessment of acrylamide and methylolacrylamide from a grouting agent used in the tunnel contruction of romeriksporten, Norway", Wat. Res. 35(11), 2645-2652. https://doi.org/10.1016/S0043-1354(00)00550-9.
- Worrell, E., Price, L., Martin, N., Hendriks, C. and Meida, L.O. (2001), "Carbon dioxide emissions from the global cement industry", Annu. Rev. Energy Environ., 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
- Wright, S.G., Zornberg, J.G. and Aguettant, J.E. (2007), The Fully Softened Shear Strength of High Plasticity Clays, FHWA/TX-07/0-5202-3, 132.
- Xanthakos, P.P., Abramson, L.W. and Bruce, D.A. (1994), Ground control and improvement. John Wiley & Sons.
- Zhang, T., Liu, S., Cai, G. and Puppala, A.J. (2014), "Study on strength characteristics and microcosmic mechanism of silt improved by lignin-based bio-energy coproducts", Ground Improvement Geosynthetics, ASCE, 220-230.