References
- Ahangar-Asr, A., Javadi, A.A., Johari, A. and Chen, Y. (2014), "Lateral load bearing capacity correlationling of piles in cohesive soils in undrained conditions: an intelligent evolutionary approach", Appl. Soft Comput., 24, 822-828. https://doi.org/10.1016/j.asoc.2014.07.027.
- Alani, A.M. and Faramarzi, A. (2014), "An evolutionary approach to correlationling concrete degradation due to sulphuric acid attack", Appl. Soft Comput., 24, 985-993. https://doi.org/10.1016/j.asoc.2014.08.044.
- Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastruct. Solut., 5(3), 1-10. https://doi.org/10.1007/s41062-020-00321-y.
- Alzabeebee, S. (2020a), "Application of EPR-MOGA in computing the liquefaction-induced settlement of a building subjected to seismic shake", Eng. Comput., https://doi.org/10.1007/s00366-020-01159-9.
- Alzabeebee, S. (2020b), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
- Alzabeebee, S. and Chapman, D.N. (2020), "Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods", Transp. Geotechn., 100372. https://doi.org/10.1016/j.trgeo.2020.100372
- Alzabeebee, S., Alshkane, Y.M., Al-Taie, A.J. and Rashed, K.A. (2021a), "Soft computing of the recompression index of fine-grained soils", Soft Comput., 25(24), 15297-15312. https://doi.org/10.1007/s00500-021-06123-3.
- Alzabeebee, S., Mohamad, S.A. and Al-Hamd, R.K.S. (2021b), "Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve", Road Mater. Pav. Design, https://doi.org/10.1080/14680629.2021.1995471.
- Alzabeebee, S. (2022), "Explicit soft computing model to predict the undrained bearing capacity of footing resting on aggregate pier reinforced cohesive ground", Innov. Infrastruct. Solut., 7(1), 1-10. https://doi.org/10.1007/s41062-021-00706-7.
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng, 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
- Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Chen, Y.J. and Kulhawy, F.H. (1994), "Case history evaluation of the behavior of drilled shafts under axial and lateral loading", Rep. No. TR-104601, Electric Power Research Institute, Palo Alto, Calif.
- Cherubini, C. and Yves, R. (1998), "A few comments on pile design: Discussion/Reply", Can. Geotech. J., 35(5), 905. https://doi.org/10.1139/t98-036.
- Coduto, D.P. (1994), Foundation design, principles and practices. Prentice Hall Inc., Englewood Cliffs, N.Y.
- Dias, D. and Grippon, J. (2017), "Numerical modelling of a pile-supported embankment using variable inertia piles", Struct, Eng, Mech., 61(2), 245-253. https://doi.org/10.12989/sem.2017.61.2.245.
- Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinform., 8(3), 207-222. https://doi.org/10.2166/hydro.2006.020b.
- Giustolisi, O. and Savic, D.A. (2009), "Advances in data-driven analyses and correlationling using EPR-MOGA", J. Hydroinform., 11(3-4), 225-236. https://doi.org/10.2166/hydro.2009.017.
- Goh, A.T., Kulhawy, F.H. and Chua C.G. (2005), "Bayesian neural network analysis of undrained side resistance of drilled shafts", J. Geotech. Geoenv. Eng., 131(1), 84-93. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(84).
- Goh, A.T.C., Zhang, R.H., Wang, W., Wang, L., Liu, H.L. and Zhang, W.G. (2020), "Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils", Acta Geotech., 15(5), 1259-1272. https://doi.org/10.1007/s11440-019-00843-5.
- Hwang, T.H., Kim, K.H. and Shin, J.H. (2017), "Bearing capacity of micropiled-raft system", Struc, Eng, Mech., 63(3), 417-428. https://doi.org/10.12989/sem.2017.63.3.417.
- Kulhawy, F.H. and Jackson, C. (1989), "Some observations of undrained side resistance of drilled shafts", Foundation Engineering: Current principles and practices, 2, 1011-1025.
- Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN correlation with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4.
- Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020b), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.N., Bui, D.T. and Rashid, A.S.A. (2020), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network correlations", Eng. Comput., 36, 671-687. https://doi.org/10.1007/s00366-019-00723-2.
- Nguyen, H., Moayedi, H., Foong, L.K., Al Najjar, H.A.H., Jusoh, W.A.W., Rashid, A.S.A. and Jamali, J. (2020b), "Optimizing ANN correlations with PSO for predicting short building seismic response", Eng. Comput., 36, 823-837. https://doi.org/10.1007/s00366-019-00733-0.
- Nguyen, H., Moayedi, H., Jusoh, W.A.W. and Sharifi, A. (2020a), "Proposing a novel predictive technique using M5Rules-PSO correlation estimating cooling load in energy-efficient building system", Eng. Comput., 36, 857-7866. https://doi.org/10.1007/s00366-019-00735-y.
- Robert, Y. (1997), "A few comments on pile design", Can. Geotech. J., 34(4), 560-567. https://doi.org/10.1139/t97-024.
- Sladen, J.A. (1992), "The adhesion factor: applications and limitations", Can. Geotech. J., 29(2), 322-326. https://doi.org/10.1139/t92-036.
- Tang, L. and Na, S. (2021), "Comparison of machine learning methods for ground settlement prediction with different tunneling datasets", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2021.08.006.
- Wang, H., Moayedi, H. and Foong, L.K. (2020), "Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design", Eng. Comput., https://doi.org/10.1007/s00366-020-00957-5.
- Weltman, A.J. and Healy, P.R. (1978), "Piling in 'Boulder Clay' and Other Glacial Tills", Construction Industry Research and Information Association, Report PG5.
- Zhang, R.H., Li, Y.Q., Goh, A.T.C. and Zhang, W.G. (2021c), "Analysis of ground surface settlement in anisotropic clays using XGBoost and RFR models", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2021.08.001.
- Zhang, W. and Goh, A.T. (2016), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front, 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003.
- Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y. and Ding, X. (2021b), "Application of deep learning algorithms in geotechnical engineering: a short critical review", Artif. Intell. Rev., 54, 5633-5673. https://doi.org/10.1007/s10462-021-09967-1.
- Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021a), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Front., 12(1), pp. 469-477. https://doi.org/10.1016/j.gsf.2020.03.007
- Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., Liu, Z. and Liu, H. (2020), "State-of-the-art review of soft computing applications in underground excavations", Geosci. Front., 11(4), 1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003.
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.