References
- Alberti, M.G., Enfedaque, A., Galvez, J.C., Canovas, M.F. and Osorio, I.R. (2014), "Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions", Mater. Des., 60, 57-65. https://doi.org/10.1016/j.matdes.2014.03.050.
- Atis, C.D. and Karahan, O. (2009), "Properties of steel fibre reinforced fly ash concrete", Constr. Build. Mater., 23, 392-399. https://doi.org/10.1016/j.conbuildmat.2007.11.002.
- Chore, H.S. and Joshi, M.P. (2015), "Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials", Adv. Concrete Constr., 3(3), 223-236. http://doi.org/10.12989/acc.2015.3.3.223.
- Colombo, M. and Felicetti, R. (2007), "New NDT techniques for the assessment of fire-damaged concrete structures", Fire Saf. J., 42, 461-472. https://doi.org/10.1016/j.firesaf.2006.09.002.
- Cunha, V.M., Barros, J.A. and Sena-Cruz, J.M. (2010), "Pullout behavior of steel fibers in self-compacting concrete", J. Mater. Civil Eng., 22(1), 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000001.
- Dong, S., Dong, X., Ashour, A., Han, B. and Ou, J. (2020), "Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete", Cement Concrete Compos., 105, 103427. https://doi.org/10.1016/j.cemconcomp.2019.103427.
- Dong, S., Han, B., Yu, X. and Ou, J. (2019b), "Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire", Compos. B Eng., 166, 298-309. https://doi.org/10.1016/j.compositesb.2018.12.015.
- Dong, S., Wang, Y., Ashour, A., Han, B. and Ou, J. (2021), "Uniaxial compressive fatigue behavior of ultra-high performance concrete reinforced with super-fine stainless wires", Int. J. Fatigue, 142, 105959. https://doi.org/10.1016/j.ijfatigue.2020.105959.
- Dong, S., Zhou, D., Ashour, A., Han, B. and Ou, J. (2019a), "Flexural toughness and calculation model of super-fine stainless wire reinforced reactive powder concrete", Cement Concrete Compos., 104, 103367. https://doi.org/10.1016/j.cemconcomp.2019.103367.
- Dragas, J., Tosic, N., Ignjatovic, I. and Marinkovic, S. (2016), "Mechanical and time-dependent properties of high-volume fly ash concrete for structural use", Mag. Concrete Res., 68(12), 632-645. https://doi.org/10.1680/jmacr.15.00384.
- Dura'n-Herrera, A., Jua'rez, C.A., Valdez, P. and Bentz, D.P. (2011), "Evaluation of sustainable high-volume fly ash concretes", Cement Concrete Compos., 33, 39-45. https://doi.org/10.1016/j.cemconcomp.2010.09.020.
- Faris, M.A., Abdullah, M.M.A.B., Muniandy, R., Abu Hashim, M.F., Bloch, K., Jez, B., Garus, S., Palutkiewicz, P., Mohd Mortar, N.A. and Ghazali, M.F. (2021), "Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties", Mater., 14(5), 1310. https://doi.org/10.3390/ma14051310.
- Feng, J., Sun, W.W., Wang, X.M. and Shi, X.Y. (2014), "Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete", Constr. Build. Mater., 69, 403-410. https://doi.org/10.1016/j.conbuildmat.2014.07.049.
- Gholampour, A. and Ozbakkaloglu, T. (2017), "Performance of sustainable concretes containing very high volume class-F fly ash and ground granulated blast furnace slag", J. Clean. Prod., 162, 1407-1417. https://doi.org/10.1016/j.jclepro.2017.06.087.
- Goriparthi, M.R. and Rao, G.T.D. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/acc.2017.5.4.313.
- Hashmi, A.F., Shariq, M. and Baqi, A. (2020), "Flexural performance of high volumefly ash reinforced concrete beams and slabs", Struct., 25, 868-880. https://doi.org/10.1016/j.istruc.2020.03.071.
- Hassan, A., Arif, M. and Shariq, M. (2019), "Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete", SN Appl. Sci., 1, 1694. https://doi.org/10.1007/s42452-019-1774-8.
- Huang, C., Lin, S., Chang, C. and Chen, H. (2013), "Mix properties and mechanical properties of concrete containing very high-volume of Class F flyash", Constr. Build. Mater., 46, 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016.
- Ignjatovic, I., Sas, Z., Dragas, J., Somlai, J. and Kovacs, T. (2017), "Radiological and material characterization of high volume fly ash concrete", J. Env. Radioact., 168, 38-45. https://doi.org/10.1016/j.jenvrad.2016.06.021.
- Iqbal, S., Ali, I., Room, S., Khan, S.A. and Ali, A. (2019), "Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers", Mater. Struct., 52(3), 56. https://doi.org/10.1617/s11527-019-1357-6.
- IS 10262 (2009), Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, India.
- IS 2386 (1990), Methods of Test for Aggregates for Concrete, Bureau of Indian Standards, New Delhi, India.
- IS 3812 (part-1) (1999), Specification for Fly Ash for Use as Pozzolana and Admixture, Bureau of Indian Standards, New Delhi, India.
- IS 383 (2002), Specification for Coarse and Fine Aggregate from Natural Sources for Concrete (second revision), Bureau of Indian Standards, New Delhi, India.
- IS 4031 (1999), Methods of Physical Tests for Hydraulic Cement, Bureau of Indian Standards, New Delhi, India.
- IS 456 (2000), Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards, New Delhi, India.
- IS 516 (2004), Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
- IS 8112 (1989), 43 Grade Ordinary Portland Cement-Specifications, Bureau of Indian Standards, New Delhi, India.
- Mehta, P.K. (2004), "High-performance, high-volume fly ash concrete for sustainable development", Proceedings of International workshop on sustainable development and concrete technology, Ames.
- Mengxiao, S., Qiang, W. and Zhikai, Z. (2015), "Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition", Constr. Build. Mater., 98, 649-655. https://doi.org/10.1016/j.conbuildmat.2015.08.134.
- Nikhil, T.R. (2014), "Use of high volume fly ash in concrete pavements for sustainable development", Int. J. Sci. Res., 3(1), 131-133. https://doi.org/10.15373/22778179/JAN2014/43
- Pajak, M. and Ponikiewski, T. (2013), "Flexural behavior of selfcompacting concrete reinforced with different types of steel fibers", Constr. Build. Mater., 47, 397-408. https://doi.org/10.1016/j.conbuildmat.2013.05.072.
- Pal, S., Shariq, M., Abbas, H. Pandit, A.K. and Masood, A. (2020), "Strength characteristics and microstructure of hooked-end steel fiber reinforced concrete containing fly ash, bottom ash and their combination", Const. Build. Mater., 247, 118530. https://doi.org/10.1016/j.conbuiltmat.2020.118530.
- Paliwal, G. and Maru, S. (2017), "Effect of fly ash and plastic waste on mechanical and durability properties of concrete", Adv. Concrete Constr., 5(6), 575-586. https://doi.org/10.12989/acc.2017.5.6.575.
- Parande, A.K. (2013), "Role of ingredients for high strength and high performance concrete-A review", Adv. Concrete Constr., 1(2), 151-162. http://doi.org/10.12989/acc.2013.1.2.151.
- Parveen and Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377.
- Patel, I. and Modhera, C.D. (2010), "Study basic properties on fiber reinforced high volume fly ash concrete", J. Eng. Res. Stud., 9(9), 60-70.
- Patel, I. and Modhera, C.D. (2013), "Experimental investigation to study effect of polyester fiber on durability of HVFA concrete through RCPT", IOSR J. Eng., 3(6), 22-27. https://doi.org/10.9790/3021-03622227.
- Rashad, A.M. (2015), "A brief on high-volume Class F fly ash as cement replacement-A guide for Civil Engineer", Int. J. Sustain. Built. Env., 4, 278-306. https://doi.org/10.1016/j.ijsbe.2015.10.002.
- Robins, P., Austin, S. and Jones, P. (2002), "Pull-out behaviour of hooked steel fibres", Mater. Struct., 35(7), 434-442. https://doi.org/10.1007/BF02483148.
- Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes(HVFA-RAC)", Adv. Concrete Constr., 3(4), 317-331. https://doi.org/10.12989/acc.2015.3.4.317.
- Siddique, R. (2004), "Properties of concrete incorporating high volumes of class F fly ash and san fibers", Cement Concrete Res., 34, 37-42. https://doi.org/10.1016/S0008-8846(03)00192-3.
- Siddique, R. (2008), "Fracture toughness and impact strength of high volume Class-F fly ash concrete reinforced with natural san fibres", Leonardo Electron. J. Pract. Tech., 12, 25-36.
- Siddique, R., Kapoor, K., Kadri, V. and Bennacer, R. (2012), "Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete", Constr. Build. Mater., 29, 270-278. https://doi.org/10.1016/j.conbuildmat.2011.09.011.
- Sofi, A., Swathy, K. and Srija, G. (2013), "Toughness study on fly ash based fiber reinforced concrete", Int. J. Adv. Struct. Eng., 5(17), 1-4. https://doi.org/10.1186/2008-6695-5-17.
- Sounthararajan, V.M. and Sivakumar, A. (2013), "Performance evaluation of metallic fibers on the low and high volume Class F fly ash based cement concrete", Int. J. Eng. Tech., 5(2), 606-619.
- Wang, X.Y. and Park, K.B. (2015), "Analysis of compressive strength development of concrete containing high volume fly ash", Constr. Build. Mater., 98, 810-819. https://doi.org/10.1016/j.conbuildmat.2015.08.099.
- Wang, X.Y. and Park, K.B. (2016), "Analysis of compressive strength development and carbonation depth of high-volume fly ash cement pastes", ACI Mater. J., 113(2), 151-161.
- Zile, E. and Zile, O. (2013), "Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers", Cement Concrete Res., 44, 18-24. https://doi.org/10.1016/j.cemconres.2012.10.014.