참고문헌
- Akbardoost, J., Ghadirian H.R. and Sangsefidi, M. (2017), "Calculation of the crack tip parameters in the holed cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading", Fatig. Fract. Eng. Mater. Struct., 40(9),1416-1427. https://doi.org/10.1111/ffe.12585.
- Alkilicgil, C. (2010), "Development of specimen geometries for mode I fracture toughness testing with disc type rock specimens", Ph.D. Dissertation of Philosophy, Middle East Technical University.
- Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688.
- Bergmann, G., and Vehoff, H. (1994), "Precracking of NiAl single crystals by compression-compression fatigue and its application to fracture toughness testing", Scripta Metallurgica et Materialia, 30(8). https://doi.org/10.1016/0956-716X(94)90539-8.
- Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. https://doi.org/10.12989/sem.2017.63.5.575.
- Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9.
- Chen, F., Cao, P., Rao, Q.H. and Sun, Z.Q. (2003), "Use of double edge-cracked Brazilian disk geometry for compression-shear fracture investigation of rock", J. Central South Univ. Tech., 10(3), 211-215. https://doi.org/10.1007/s11771-003-0011-0.
- Chong, K. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", Int. J. Fract., 26(2), R59-R62. https://doi.org/10.1007/BF01157555.
- Civalek, O . and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
- Cui, Z.D., Liu, D.A., An, G.M., Sun, B. and Zhou, M. (2010), "A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness", Int. J. Rock Mech. Min. Sci., 47(5), 871-876. https://doi.org/10.1016/j.ijrmms.2009.12.015.
- Cundall, P.A. and Potyondy, D.O. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Dai, F. and Xia, K.W. (2013), "Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite", Int. J. Rock Mech. Min. Sci., 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035.
- Dwivedi, R.D., Soni, A.K., Goel, R.K. and Dube, A.K. (2000), "Fracture toughness of rocks under sub-zero temperature conditions", Int. J. Rock Mech. Min. Sci., 37(8), 1267-1275. https://doi.org/10.1016/S1365-1609(00)00051-4.
- Evans, A.G. (1972), "A method for evaluating the time-dependent failure characteristics of brittle materials-and its application to polycrystalline alumina", J. Mater. Sci., 7(10), 1137-1146. https://doi.org/10.1007/BF00550196.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
- Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracture-toughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. https://doi.org/10.1016/0013-7952(93)90056-I.
- Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.org/10.1007/s00603-017-1310-3.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28. https://doi.org/10.1016/j.ijrmms.2014.01.008.
- Iqbal, M.J. and Mohanty, B. (2007), "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mech. Rock Eng., 40(5), 453-475. https://doi.org/10.1007/s00603-006-0107-6.
- Kataoka, M., Obara, Y. and Kuruppu, M. (2015), "Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure", Rock Mech. Rock Eng., 48(4), 1353-1367. https://doi.org/10.1007/s00603-014-0665-y.
- Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006.
- Kuruppu, M.D. (1997), "Fracture toughness measurement using chevron notched semi-circular bend specimen", Int. J. Fract., 86(4), L33-L38.
- Kuruppu, M.D. (1998), "Stress intensity factors of chevron-notched semi-circular specimen", APCOM 98 Computer Applications in the Mineral Industries International Symposium, 111-112.
- Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/sem.2018.66.1.125.
- Monfared, M.M. (2017), "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., 64(1), 71-79. https://doi.org/10.12989/sem.2017.64.1.071.
- Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2017), "On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria", Struct. Eng. Mech., 61(3), 371-379. https://doi.org/10.12989/sem.2017.61.3.371.
- Nasseri, M.H.B. and Mohanty, B. (2008), "Fracture toughness anisotropy in granitic rocks", Int. J. Rock Mech. Min. Sci., 45(2), 167-193. https://doi.org/10.1016/j.ijrmms.2007.04.005.
- Nezhad, M.M., Fisher, Q.J., Gironacci, E. and Rezania, M. (2018), "Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test", Rock Mech. Rock Eng., 51(6), 1755-1775. https://doi.org/10.1007/s00603-018-1429-x.
- Ouchterlony, F. (1982), "Review of fracture toughness testing of rock", SM Archiv., 7, 131-211.
- Ouchterlony, F. (1988) "ISRM commission on testing methods: Suggested methods for determining fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96
- Ouchterlony, F. (1991), "Experiences from fracture toughness testing of rock: According to the ISRM suggested methods", SveDeFo.
- Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech, 52(4), 829-841. https://doi.org/10.12989/sem.2014.52.4.829.
- Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 149-167. https://doi.org/10.12989/cac.2013.11.2.149.
- Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2018), "Two new triangular finite elements containing stable open cracks", Struct. Eng. Mech., 65(1), 99-110. https://doi.org/10.12989/sem.2018.65.1.099.
- Shi, X., Yao, W., Xia, K., Tang, T. and Shi, Y. (2019), "Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens", Eng. Fract. Mech., 205, 136-151. https://doi.org/10.1016/j.engfracmech.2018.11.027.
- Shiryaev, A.M. and Kotkis, A.M. (1983), "Methods for determining fracture toughness of brittle porous materials", Indust. Lab., 48(9), 917-918.
- Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", Int. J. Rock Mech. Min. Sci., 48(8), 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019.
- Tutluoglu, L. and Keles, C. (2012), "Effects of geometric factors on mode I fracture toughness for modified ring tests", Int. J. Rock Mech. Min. Sci., 51, 149-161. https://doi.org/10.1016/j.ijrmms.2012.02.004.
- Wang, J., Huang, S., Guo, W., Qiu, Z. and Kang, K. (2020), "Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen", Eng. Fract. Mech., 224, 106814. https://doi.org/10.1016/j.engfracmech.2019.106814.
- Wang, J., Xie, L., Xie, H., Ren, L., He, B., Li, C. and Gao, C. (2016), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046.
- Wei, M.D., Dai, F., Xu, N.W. and Zhao, T. (2018), "Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock", Fatig. Fract. Eng. Mater. Struct., 41(1), 197-211. https://doi.org/10.1111/ffe.12672.
- Wei, M.D., Dai, F., Xu, N.W., Liu, Y. and Zhao, T. (2018), "A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks", Eng. Fract. Mech., 190, 1-15. https://doi.org/10.1016/j.engfracmech.2017.11.041.
- Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.
- Wei, M.D., Dai, F., Xu, N.W., Zhao, T. and Liu, Y. (2017), "An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks", Int. J. Rock Mech. Min. Sci., 99, 28-38. https://doi.org/10.1016/j.ijrmms.2017.09.004.
- Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2016), "Numerical observation of three-dimensional wing cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.
- Xu, Y., Dai, F., Zhao, T., Xu, N.W. and Liu, Y. (2016), "Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles", Rock Mech. Rock Eng., 49(8), 3083-3093. https://doi.org/10.1007/s00603-016-0978-0.
- Yao, W. and Xia, K. (2019), "Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications", J. Rock Mech. Geotech. Eng., 11(5), 1066-1093. https://doi.org/10.1016/j.jrmge.2019.03.003.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M., Bayrak, M.C . and Avcar, M. (2019), "Finite element modeling of receding contact problem", Int. J. Eng. Appl. Sci., 11(4), 468-475. https://doi.org/10.24107/ijeas.646718.
- Yaylaci, M., Terzi, C. and Avcar, M. (2019a), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
- Yin, T., Wu, Y., Li, Q., Wang, C. and Wu, B. (2020), "Determination of double-K fracture toughness parameters of thermally treated granite using notched semi-circular bending specimen", Eng. Fract. Mech., 226, 106865. https://doi.org/10.1016/j.engfracmech.2019.106865.
- Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 199-213. https://doi.org/10.12989/cac.2015.15.2.199.
- Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", Int. J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.