DOI QR코드

DOI QR Code

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat (Department of Civil Engineering, Nevsehir Haci Bektas Veli University)
  • 투고 : 2020.05.24
  • 심사 : 2021.12.11
  • 발행 : 2022.01.25

초록

The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

키워드

참고문헌

  1. Ahmadi, M., Farzin, S., Hassani, A. and Motamedi, M. (2017), "Mechanical properties of the concrete containing recycled fibers and aggregates", Constr. Build. Mater., 144, 392-398. https://doi.org/10.1016/j.conbuildmat.2017.03.215.
  2. ASTM C 597-09 (2009), Standard Test Method for Pulse Velocity through Concrete, ASTM International, West Conshohocken, PA, USA.
  3. Atabey, I.I. and Ay, C. (2021), "The influence of calcium aluminate cement on physical and mechanical properties of waste glass powder based geopolymer mortars under different curing conditions", Eur. J. Sci. Tech., 24, 184-189. https://doi.org/10.31590/Eur. J. Sci. Tech..899513.
  4. Atabey, I.I. and Bayer Ozturk, Z. (2021), "Investigation of usability of ceramic sanitaryware wastes in geopolymer mortar production" Int. J. Eng. Adv. Dev., 13(1), 212-219. https://doi.org/10.29137/umagd.782733.
  5. Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K.S. and Singh, M. (2020), "Environmental impact assessment of fly ash and silica fume based geopolymer concrete", J. Clean. Prod., 254, 120147. https://doi.org/10.1016/j.jclepro.2020.120147.
  6. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
  7. Capros, P., Kouvaritakis, N. and Mantzos, L. (2001), "Economic evaluation of sectoral emission reduction objectives for climate change: Top-down analysis of greenhouse gas emission possibilities in the EU", Contribution to a Study for DG Environment, European commission.
  8. Celikten, S. and Isikdag, B. (2020), "Strength development of ground perlite-based geopolymer mortars", Adv. Concrete Constr., 9(3), 227-234. https://doi.org/10.12989/acc.2020.9.3.227.
  9. Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007) "Workability and strength of coarse high calcium fly ash geopolymer", Cement Concrete Compos., 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002.
  10. Davidovits, J. (1994), "Global warming impact on the cement and aggregates industries", World Res. Rev., 6(2), 263-278.
  11. Dehghani, M., Keshtgar, L., Javaheri, M.R., Derakhshan, Z., Oliveri Conti, G., Zuccarello, P. and Ferrante, M. (2017), "The effects of air pollutants on the mortality rate of lung cancer and leukemia", Mol. Med. Rep., 15(5), 3390-3397. https://doi.org/0.3892/mmr.2017.6387. https://doi.org/10.3892/mmr.2017.6387
  12. El Mir, A. and Nehme, S.G. (2017), "Utilization of industrial waste perlite powder in self-compacting concrete", J. Clean. Prod., 156, 507-517. https://doi.org/10.1016/j.jclepro.2017.04.103.
  13. Erdogan, S.T. (2014), "Properties of ground perlite geopolymer mortars", J. Mater. Civil Eng., 27(7), 04014210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001172.
  14. Farina, A., Zanetti, M.C., Santagata, E. and Blengini, G.A. (2017), "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement", Res. Conserv. Recy., 117, 204-212. https://doi.org/10.1016/j.resconrec.2016.10.015.
  15. Farooq, F., Xin, J., Javed, M.F. Akbar, A. Shah, M.I., Aslam, F. and Alyousef, R. (2021) "Geopolymer concrete as sustainable material: A state of the art review", Constr. Build. Mater., 306, 124762. https://doi.org/10.1016/j.conbuildmat.2021.124762.
  16. Fernandez-Ruiz, M.A., Gil-Martin, L.M., Carbonell-Marquez, J.F. and Hernandez-Montes, E. (2018), "Epoxy resin and ground tyre rubber replacement for cement in concrete: Compressive behaviour and durability properties", Constr. Build. Mater., 173, 49-57. https://doi.org/10.1016/j.conbuildmat.2018.04.004.
  17. Gonen, T. (2018), "Freezing-thawing and impact resistance of concretes containing waste crumb rubbers", Constr. Build. Mater. 177, 436-442. https://doi.org/10.1016/j.conbuildmat.2018.05.105.
  18. Haddadou, N., Chaid, R. and Ghernouti, Y. (2015), "Experimental study on steel fibre reinforced self-compacting concrete incorporating high volume of marble powder", Eur. J. Envir. Civil Eng., 19(1), 48-64. https://doi.org/10.1080/19648189.2014.929537.
  19. Hamidi, R.M., Man, Z. and Azizli, K.A. (2016), "Concentration of NaOH and the effect on the properties of fly ash based geopolymer", Proc. Eng., 148, 189-193. https://doi.org/10.1016/j.proeng.2016.06.568.
  20. Hesami, S., Hikouei, I.S. and Emadi, S.A.A. (2016), "Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber", J. Clean. Prod., 133, 228-234. https://doi.org/10.1016/j.jclepro.2016.04.079.
  21. Huang, B., Li, G., Pang, S.S. and Eggers, J. (2004), "Investigation into waste tire rubber-filled concrete", J. Mater. Civil Eng., 16(3), 187-194. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(187).
  22. Koksal, F., Serrano-Lopez, M.A., Sahin, M., Gencel, O. and Lopez-Colina, C. (2015), "Combined effect of steel fibre and expanded vermiculite on properties of lightweight mortar at elevated temperatures", Mater. Struct., 48(7), 2083-2092. https://doi.org/10.1617/s11527-014-0294-7.
  23. Komnitsas, K. and Zaharaki, D. (2007), "Geopolymerisation: A review and prospects for the minerals industry", Min. Eng., 20(14), 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011.
  24. Kotwica, L., Pichor, W. and Nocun-Wczelik, W. (2016), "Study of pozzolanic action of ground waste expanded perlite by means of thermal methods", J. Therm. Anal. Calorimetry, 123(1), 607-613. https://doi.org/10.1007/s10973-015-4910-8.
  25. Kozhukhova, N.I., Chizhov, R.V., Zhernovsky, I.V. and Strokova, V.V. (2016), "Structure formation of geopolymer perlite binder vs. type of Alkali activating agent", Int. J. Pharm. Tech., 8(3), 15338-15348.
  26. Loloie, Z., Mozaffarian, M., Soleimani, M. and Asassian, N. (2017), "Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method", Korean J. Chem. Eng., 34(2), 366-375. https://doi.org/10.1007/s11814-016-0266-4.
  27. Meesala, C.R., Verma, N.K. and Kumar, S. (2019), "Critical review on fly-ash based geopolymer concrete", Struct. Concrete, 21(3), 1013-1028. https://doi.org/10.1002/suco.201900326.
  28. Mendis, A.S., Al-Deen, S. and Ashraf, M. (2017), "Effect of rubber particles on the flexural behaviour of reinforced crumbed rubber concrete beams", Constr. Build. Mater., 154, 644-657. https://doi.org/10.1016/j.conbuildmat.2017.07.220.
  29. Mugahed Amran, Y.H., Alyousef, R., Alabduljabbar, H. and El-Zeadani, M. (2020), "Clean production and properties of geopolymer concrete: A review". J. Clean. Prod., 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679.
  30. Olivares, F.H., Barluenga, G., Bollati, M. and Witoszek, B. (2002) "Static and dynamic behaviour of recycled tyre rubber-filled concrete", Cement Concrete Res., 32(10), 1587-1596. https://doi.org/10.1016/S0008-8846(02)00833-5.
  31. Papa, E., Medri, V., Murri, A.N., Laghi, L., De Aloysio, G., Bandini, S. and Landi, E. (2018), "Characterization of alkali bonded expanded perlite", Constr. Build. Mater., 191, 1139-1147. https://doi.org/10.1016/j.conbuildmat.2018.10.086.
  32. Patel, Y.J. and Shah, N. (2018), "Development of self-compacting geopolymer concrete as a sustainable construction material", Sustain. Envir. Res., 28(6), 412-421. https://doi.org/10.1016/j.serj.2018.08.004.
  33. Phummiphan, I., Horpibulsuk, S., Rachan, R., Arulrajah, A., Shen, S.L. and Chindaprasirt, P. (2018), "High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material", J. Hazard. Mater., 341, 257-267. https://doi.org/10.1016/j.jhazmat.2017.07.067.
  34. Pipilikaki, P., Katsioti, M., Papageorgiou, D., Fragoulis, D. and Chaniotakis, E. (2005), "Use of tire derived fuel in clinker burning", Cement Concrete Compos., 27(7-8), 843-847. https://doi.org/10.1016/j.cemconcomp.2005.03.009.
  35. Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V. and Chindaprasirt, P. (2013), "Lightweight geopolymer concrete containing aggregate from recycle lightweight block", Mater. Des., 52, 580-586. https://doi.org/10.1016/j.matdes.2013.06.001.
  36. Rashad, A.M. (2013a), "A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-A guide for civil engineer", Constr. Build. Mater., 47, 29-55. https://doi.org/10.1016/j.conbuildmat.2013.04.011.
  37. Rashad, A.M. (2013b), "Alkali-activated metakaolin: A short guide for civil Engineer-An overview", Constr. Build. Mater., 41, 751-765. https://doi.org/10.1016/j.conbuildmat.2012.12.030.
  38. Rashad, A.M. (2016a), "A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials", Int. J. Sustain. Built Envir., 5(1), 46-82. https://doi.org/10.1016/j.ijsbe.2015.11.003.
  39. Rashad, A.M. (2016b), "A synopsis about perlite as building material-A best practice guide for civil engineer", Constr. Build. Mater., 121, 338-353. https://doi.org/10.1016/j.conbuildmat.2016.06.001.
  40. Rashad, A.M. (2019), "The effect of polypropylene, polyvinylalcohol, carbon and glass fibres on geopolymers properties", J. Mater. Sci. Tech., 35(2), 127-146. https://doi.org/10.1080/02670836.2018.1514096.
  41. Rashad, A.M. (2020), "Effect of steel fibers on geopolymer properties - The best synopsis for civil engineer", Constr. Build. Mater., 246, 118354. https://doi.org/10.1016/j.conbuildmat.2020.118534.
  42. Sahmaran, M. and Yaman, I.O. (2007), "Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash", Constr. Build. Mater., 21(1), 150-156. https://doi.org/10.1016/j.conbuildmat.2005.06.032.
  43. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H. and Balas, A. (2012), "Progress in used tyres management in the European Union: A review", Waste Manage., 32(10), 1742-1751. https://doi.org/10.1016/j.wasman.2012.05.010.
  44. Simoes, T., Octavio, C., Valenca, J., Costa, H., Dias-da-Costa, D. and Julio, E. (2017), "Influence of concrete strength and steel fibre geometry on the fibre/matrix interface", Compos. Part B Eng., 122, 156-164. https://doi.org/10.1016/j.compositesb.2017.04.010.
  45. Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sus. Energ. Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
  46. Tippayasam, C., Balyore, P., Thavorniti, P., Kamseu, E., Leonelli, C., Chindaprasirt, P. and Chaysuwan, D. (2016), "Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer", Constr. Build. Mater., 104, 293-297. https://doi.org/10.1016/j.conbuildmat.2015.11.027.
  47. Tsaousi, G.M., Douni, I. and Panias, D. (2016), "Characterization of the properties of perlite geopolymer pastes", Mater. Construct., 66(324), 102. http://doi.org/10.3989/mc.2016.10415.
  48. Turk, K., Oztekin, E. and Kina, C. (2019), "Self-compacting concrete with blended short and long fibres: Experimental investigation on the role of fibre blend proportion", Eur. J. Envir. Civil Eng., 1-14. https://doi.org/10.1080/19648189.2019.1686069.
  49. Turkish Standards European Norms (2007), Methods of Test for Mortar for Masonry-Part 3: Determination of Consistence of Fresh Mortar (by flow table), TS EN 1015-3/A2, Turkish Standards Institution, Ankara, Turkey.
  50. Turkish Standards European Norms. (2009), Methods of testing cement-Part 1: Determination of strength, TS EN 196-1, Turkish Standards Institution, Ankara, Turkey.
  51. Turner, L.K. and Collins, F.G. (2013), "Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete", Constr. Build. Mater., 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
  52. Wang, C., Tian, X., Zhao, B., Zhu, L. and Li, S. (2019), "experimental study on spent FCC catalysts for the catalytic cracking process of waste tires", Proc., 7(6), 335. https://doi.org/10.3390/pr7060335.
  53. Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
  54. Zhong, H., Poon, E.W., Chen, K. and Zhang, M. (2019), "Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres", J. Clean. Prod., 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950.