DOI QR코드

DOI QR Code

Optimization of spatial truss towers based on Rao algorithms

  • 투고 : 2021.08.03
  • 심사 : 2021.11.22
  • 발행 : 2022.02.10

초록

In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

키워드

과제정보

The author would like to thanks Prof. Dr. Tayfun Dede, and Assist. Prof. Barbaros Atmaca for fruitful discussions and constructive comments on the optimization part of this paper. Thanks also to Prof. Dr. Sakir Erdogdu the Head of Department of Civil Engineering, Karadeniz Technical University, Turkey, for inviting me to his group as visiting scholar from period December 2020 - March 2021.

참고문헌

  1. Ahrari, A., Atai, A.A. and Deb, K. (2014), "Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy", Eng. Optim., 47(8), 1063-1084. https://doi.org/10.1080/0305215X.2014.947972.
  2. Artar, M. (2016), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733.
  3. Atmaca, B. (2021a), "Size and post-tensioning cable force optimization of cable-stayed footbridge", Struct., 33, 2036-2049. https://doi.org/10.1016/j.istruc.2021.05.050.
  4. Atmaca, B. (2021b), "Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm", Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2020.34.6.853.
  5. Atmaca, B., Dede, T. and Grzywinski, M. (2020), "Optimization of cables size and prestressing force for a single pylon cable stayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2021.40.6.805.
  6. Bayram, A., Uzlu, E., Kankal, M. and Dede, T. (2014), "Modeling stream dissolved oxygen concentration using teaching-learning based optimization algorithm", Environ. Earth Sci., 73, 6565-6576. https://doi.org/10.1007/s12665-014-3876-3.
  7. Capriles, P.V.S.Z., Fonseca, L.G., Barbosa, H.J.C. and Lemonge, A.C.C. (2014), "Rank-based ant colony algorithm for truss weight minimization with discrete variables", Commun. Numer. Meth. Eng., 23, 553-575. https://doi.org/9910.1002/cnm.912.
  8. Das, A., Hirwani, C.K., Panda, S.K., Topal, U., and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749.
  9. Dede, T. (2013), "Optimum design of grillage structures to LRFD-AISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48, 955-964. https://doi.org/10.1007/s00158-013-0936-3.
  10. Dede, T. and Ayvaz, Y. (2015), "Combined size and shape optimization of structures with a new meta-heuristic algorithm", Appl. Soft Comput., 28, 250-258. https://doi.org/10.1016/j.asoc.2014.12.007.
  11. Dede, T., Grzywinski, M. and Selejdak, J. (2020a), "Continuous size optimization of large-scale dome structures with dynamic constraints", Struct. Eng. Mech., 73(4), 397-405. https://doi.org/10.12989/sem.2020.73.4.397.
  12. Dede, T., Grzywinski, M., Rao, R.V. and Atmaca, B. (2020b), "The size optimization of steel braced barrel vault structure by using Rao-1 Algorithm", Sigma J. Eng. Nat. Sci., 38(3), 1415-1425.
  13. Dorigo, M. (1992), "Optimization, learning and natural algorithms", PhD Thesis, Politecnico di Milano, Italy.
  14. Erol, O.K. and Eksin, I. (2006), "A new optimization method: big bang-big crunch", Adv. Eng. Softw., 37(2), 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005.
  15. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simul., 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
  16. Gholizadeh, S (2013), "Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization", Comput. Struct., 125, 86-99. https://doi.org/10.1016/j.compstruc.2013.04.024.
  17. Groenwold, A.A. and Stander, N. (1997), "Optimal discrete sizing of truss subject to buckling constraints", Struct. Optim., 14, 71-80. https://doi.org/10.1007/BF01812508.
  18. Grzywinski, M. (2020), "Size and shape design optimization of truss structures using the Jaya algorithm", CAMES, 27(2-3), 177-184. https://doi.org/10.24423/cames.282.
  19. Grzywinski, M., Dede, T. and Ozdemir, Y.I. (2019a), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047.
  20. Grzywinski, M., Selejdak, J. and Dede, T. (2019b), "Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm", Steel Compos. Struct., 33(5), 747-753. https://doi.org/10.12989/scs.2019.33.5.747.
  21. Ho-Huu, V., Nguyen-Thoi, T., Nguyen-Thoi, M.H. and Le-Anh, L. (2015), "An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures", Exp. Syst. Appl., 42(20), 7057-7069. https://doi.org/10.1016/j.eswa.2015.04.072.
  22. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T. and Nguyen-Trang, T. (2016), "An adaptive elitist differential evolution for optimization of truss structures with discrete design variables", Comput. Struct., 165, 59-75. https://doi.org/10.1016/j.compstruc.2015.11.014.
  23. Jawad, F.K.J., Ozturk, C., Dansheng, W., Mahmood, M., Al-Azzawi, O. and Anas Al-Jemely, A. (2021), "Sizing and layout optimization of truss structures with artificial bee colony algorithm", Struct., 30, 546-559, https://doi.org/10.1016/j.istruc.2021.01.016.
  24. Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimisation: Artificial Bee Colony (ABC) algorithm", J. Global Optim., 39, 459-471. https://doi.org/10.1007/s10898-007-9149-x.
  25. Kaveh A., Hosseini, S.M. and Zaerreza, A. (2021b), "Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables", Struct., 29, 107-128. https://doi.org/10.1016/j.istruc.2020.11.008.
  26. Kaveh, A. and Kalatjari, V. (2004), "Size/geometry optimization of trusses by the force method and genetic algorithm", ZAMM, 84(5), 347-357. https://doi.org/10.1002/zamm.200310106.
  27. Kaveh, A. and Talatahari, S. (2009), "A particle swarm ant colony optimization for truss structures with discrete variables", J. Constr. Steel Res., 65(8-9), 1558-1568. https://doi.org/10.1016/j.jcsr.2009.04.021.
  28. Kaveh, A., Akbari, H. and Hosseini, S.M. (2021a), "Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems", Eng. Comput., 38(4), 1554-1606. https://doi.org/10.1108/EC-05-2020-0235.
  29. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948, November.
  30. Keveh, A. and Zaerreza, A. (2020), "Shuffled shepherd optimization method: A new meta-heuristic algorithm", Eng. Comput., 37(7), 2357-2389. https://doi.org/10.1108/EC-10-2019-0481.
  31. Le, D.T., Bui, D.K., Ngo, T.D., Nguyen, Q.H. and Nguyen-Xuan, H. (2019), "A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures", Comput. Struct., 212, 20-42. https://doi.org/10.1016/j.compstruc.2018.10.017.
  32. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Eng. Comput., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.
  33. Lee, K.S., Han, S.W. and Geem, Z.W. (2011), "Discrete size and discrete-continuous configuration optimization methods for truss structures using the harmony search algorithm", Int. J. Optim. Civil Eng, 1, 107-126.
  34. Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004.
  35. Omidinasab, F. and Goodarzimehr, V. (2020), "A hybrid particle swarm optimization and genetic algorithm for truss structures with discrete variables", J. Appl. Comput. Mech., 6(3), 593-604. https://doi.org/10.22055/JACM.2019.28992.1531.
  36. Ozturk, H.T., Dede, T. and Turker, E. (2020), "Optimum design of reinforced concrete counterfort retaining walls using TLBO, Jaya algorithm", Struct., 25, 285-296. https://doi.org/10.1016/j.istruc.2020.03.020.
  37. Rahami, H., Kaveh, A. and Gholipour, Y. (2008), "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Comput. Struct., 30(9), 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012.
  38. Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7, 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
  39. Rao, R.V. (2020), "Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems", Int. J. Ind. Eng. Comput., 11, 107-130. https://doi.org/10.5267/j.ijiec.2019.6.002.
  40. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  41. Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102-103, 49-63. https://doi.org/10.1016/j.compstruc.2012.03.013.
  42. Shojaee, S., Arjomand, M. and Khatibinia, M. (2013), "A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation", Int. J. Optim. Civil Eng., 3(1), 57-83.
  43. Souza, R.R., Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F. and Torii, A.J. (2016), "A procedure for the size, shape and topology optimization of transmission line tower structures", Eng. Struct., 111, 162-184. http://doi.org/10.1016/j.engstruct.2015.12.005.
  44. Taheri, F., Ghasemi, M.R. and Dizangian, B. (2020), "Practical optimization of power transmission towers using the RBF-based ABC algorithm", Struct. Eng. Mech., 73(4), 463-479. http://doi.org/10.12989/sem.2020.73.4.463.
  45. Tang, W., Tong, L. and Gu, Y. (2005), "Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables", Int. J. Numer. Meth. Eng., 62(13), 1737-1762. https://doi.org/10.1002/nme.1244.
  46. Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using teaching-learning-based optimization", KSCE J. Civil Eng., 21, 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
  47. Uzlu, E., Komurcu, M.I., Kankal, M., Dede, T. and Ozturk, H.T. (2014), "Prediction of berm geometry using a set of laboratory tests combined with teaching-learning-based optimization and artificial bee colony algorithms", Appl. Ocean Res., 48, 103-113. https://doi.org/10.1016/j.apor.2014.08.002.
  48. Wang, D., Zhang, W.H. and Jiang, J.S. (2002), "Combined shape and sizing optimization of truss structures", Comput. Mech., 29, 307-312. https://doi.org/10.1007/s00466-002-0343-x.