DOI QR코드

DOI QR Code

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M. (Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University) ;
  • Mamazizi, A. (Department of Civil Engineering, Faculty of Engineering, University of Kurdistan) ;
  • Khosravi, H. (Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University)
  • 투고 : 2021.07.16
  • 심사 : 2021.12.02
  • 발행 : 2022.02.10

초록

Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

키워드

참고문헌

  1. Abbasi, S., Farhatnia, F. and Jazi, S.R. (2014), "A semi-analytical solution on static analysis of circular plate exposed to nonuniform axisymmetric transverse loading resting on Winkler elastic foundation", Arch. Civil Mech. Eng., 14(3), 476-488. https://doi.org/10.1016/j.acme.2013.09.007.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. http://doi.org/10.12989/cac.2019.24.4.347.
  3. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  4. Altekin, M. (2020), "Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation", Comput. Concrete, 25(6), 537-549. http://doi.org/10.12989/cac.2020.25.6.537.
  5. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. http://doi.org/10.12989/eas.2016.10.6.1429.
  6. Buczkowski, R. and Torbacki, W. (2001), "Finite element modeling of thick plates on two parameter elastic foundation", Int. J. Numer. Anal. Meth. Geomech., 25, 1409-1427. https://doi.org/10.1002/nag.187.
  7. Buczkowski, R. and Torbacki, W. (2009), "Finite element analysis of plate on layered tensionless foundation", Arch. Civil Eng., 56(3), 255-274. https://doi.org/10.2478/v.10169-010-0014-9.
  8. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649.
  9. Celik, M. and Omurtag, M.H. (2005), "Determination of the Vlasov foundation parameters: quadratic variation of elasticity modulus using FE analysis", Struct. Eng. Mech., 19(6), 619-637. http://doi.org/10.12989/sem.2005.19.6.619.
  10. Celik, M. and Saygun, A.A. (1999), "A method for the analysis of plates on a two-parameter foundation", Int. J. Solid. Struct., 36, 2891-2915. https://doi.org/10.1016/S0020-7683(98)00135-8.
  11. Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2017), "Shear buckling analysis of laminated plates on tensionless elastic foundations", Steel Compos. Struct., 24(6), 697-709. http://doi.org/10.12989/scs.2017.24.6.697.
  12. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. http://doi.org/10.12989/scs.2017.25.6.71.
  13. Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J. Appl. Phys., 21, 55-58. https://doi.org/10.1063/1.1699420.
  14. Irgens, F. (1980), Continuum Mechanics, Springer-Verlag, Berlin.
  15. Lezgy-Nazargah, M. (2016), "A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates", Acta Mechanica, 227(12), 3429-3450. https://doi.org/10.1007/s00707-016-1676-4.
  16. Lezgy-Nazargah, M. and Meshkani, Z. (2018), "An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations", Struct. Eng. Mech., 66(5), 665-676. https://doi.org/10.12989/sem.2018.66.5.665.
  17. Lezgy-Nazargah, M. and Salahshuran, S. (2018), "A new mixed-field theory for bending and vibration analysis of multi-layered composite plate", Arch. Civil Mech. Eng., 18(3), 818-832. https://doi.org/10.1016/j.acme.2017.12.006.
  18. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A higher order theory of plate deformation, Part 1: Homogeneous plates", ASME J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154.
  19. Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi A. and Bedia, E.A.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., 23(3), 317-330. http://doi.org/10.12989/scs.2017.23.3.317.
  20. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexure motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.
  21. Mullapudi, R. and Ayoub, A. (2010), "Nonlinear finite element modeling of beams on two-parameter foundations", Comput. Geotech., 37, 334-342. https://doi.org/10.1016/j.compgeo.2009.11.006.
  22. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  23. Ozgan, K. and Daloglu, A.T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/sem.2007.26.1.069.
  24. Ozgan, K. and Daloglu, A.T. (2008), "Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model", Thin Wall. Struct., 46, 1236-1250. https://doi.org/10.1016/j.tws.2008.02.006.
  25. Pasternak, P.L. (1954), "New method of calculation for flexible substructures on two-parameter elastic foundation", Gosudarstvennoe Izdatelstoo, Literatury po Stroitelstvu i Architekture, Moskau, 1-56.
  26. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  27. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, A69- A77. https://doi.org/10.1115/1.4009435.
  28. Teodoru, I. B. (2009), "Beams on elastic foundation the simplified continuum approach", Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 55(4), 37.
  29. Vallabhan, C.V.G., Straughan, W.T. and Das, Y.C. (1991), "Refned model for analysis of plates on elastic foundations", J. Eng. Mech., ASCE, 117(12), 2830-2844. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830).
  30. Vlasov, B.F. (1957), "On the equation of theory of bending of plates", Izv. AN SSR, OMN, 12, 57-60.
  31. Vlasov, V.Z. and Leont'ev, N.N. (1960), Beams, Plates and Shells on Elastic Foundations, GIFML, Moskau.
  32. Wang, Q., Shi, D. and Shi, X. (2016), "A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation", Meccanica, 51, 1985-2017. https://doi.org/10.1007/s11012-015-0345-3.
  33. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114, https://doi.org/10.12989/cac.2020.26.2.107.
  34. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes. Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  35. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci A. (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  36. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  37. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., https://doi.org/10.1016/j.mechmat.2020.103730
  38. Yaylaci, M., Yayli M., Uzun Yaylaci E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  39. Zenkour, A.M., Allam, M.N.M., Shaker, M.O. and Radwan, A.F. (2011), "On the simple and mixed first-order theories for plates resting on elastic foundations", Acta Mechanica, 220, 33-46. https://doi.org/10.1007/s00707-011-0453-7.