DOI QR코드

DOI QR Code

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu (School of Mechanical Engineering and Automation, Beihang University) ;
  • Yang, Zhijie (State Key Laboratory of Virtual Reality and Systems, Beihang University) ;
  • Wang, Chunjie (School of Mechanical Engineering and Automation, Beihang University) ;
  • Ding, Jianzhong (School of Mechanical Engineering and Automation, Beihang University)
  • Received : 2021.02.11
  • Accepted : 2021.08.29
  • Published : 2022.02.10

Abstract

Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

Keywords

Acknowledgement

This work was supported by the National Science Foundation of China (Grant No51635002). The authors are grateful to the editor and anonymous reviewers for their suggestions in improving the quality of the paper.

References

  1. Allaire, G., Jouve, F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), 363-393. https://doi.org/10.1016/j.jcp.2003.09.032.
  2. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1(4), 193-202. https://doi.org/10.1007/BF01650949.
  3. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
  4. Cai, J. and Wang, C. (2020), "Robust concurrent topology optimization of multiscale structure under load position uncertainty. Struct. Eng. Mech., 76(4), 529-540. https://doi.org/10.12989/ SEM.2020.76.4.529.
  5. Cai, J., Wang, C. and Fu, Z. (2020), "Robust concurrent topology optimization of multiscale structure under single or multiple uncertain load cases", Int. J. Numer. Meth. Eng., 121(7), 1456-1483. https://doi.org/10.1002/nme.6275.
  6. Cui, C., Ohmori, H. and Sasaki, M. (2003), "Computational morphogenesis of 3D structures by extended ESO method", J. Int. Assoc. Shell Spat. Struct., 44(1), 51-61.
  7. de Weck, O. and Kim, I.Y. (2004), "Adaptive weighted sum method for bi-objective optimization", 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, April.
  8. Deaton, J.D. and Grandhi, R.V. (2014), "A survey of structural and multidisciplinary continuum topology optimization: Post 2000", Struct. Multidisc. Optim., 49(1), 1-38. https://doi.org/10.1007/s00158-013-0956-z.
  9. Deng, J. and Chen, W. (2017), "Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty", Struct. Multidisc. Optim., 56(1), 1-19. https://doi.org/10.1007/s00158-017-1689-1.
  10. Edgar, J. and Tint, S. (2015), "Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing", Johnson Matthey Technol. Rev., 59(3), 193-198. https://doi.org/10.1595/205651315X688406.
  11. Ferreira, R.T., Rodrigues, H.C., Guedes, J.M. and Hernandes, J.A. (2014), "Hierarchical optimization of laminated fiber reinforced composites", Compos. Struct., 107, 246-259. https://doi.org/10.1016/j.compstruct.2013.07.051.
  12. Fukushima, J., Suzuki, K. and Kikuchi, N. (1992), "Shape and topology optimization of a car body with multiple loading conditions (No. 920777)", SAE Technical Paper.
  13. Gao, J., Luo, Z., Li, H., Li, P. and Gao, L. (2019), "Dynamic multiscale topology optimization for multi-regional microstructured cellular composites", Compos. Struct., 211, 401-417. https://doi.org/10.1016/j.compstruct.2018.12.031.
  14. Guo, X. and Cheng, G.D. (2010), "Recent development in structural design and optimization", Acta Mechanica Sinica, 26(6), 807-823. https://doi.org/10.1007/s10409-010-0395-7.
  15. Huang, X. and Xie, M. (2010), Evolutionary Topology Optimization of Continuum Structures: Methods and Applications, John Wiley & Sons.
  16. Huang, X. and Xie, Y.M. (2007), "Convergent and meshindependent solutions for the bi-directional evolutionary structural optimization method", Finite Elem. Anal. Des., 43(14), 1039-1049. https://doi.org/10.1016/j.finel.2007.06.006.
  17. Huang, X. and Xie, Y.M. (2009), "Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials", Comput. Mech., 43(3), 393-401. https://doi.org/10.1007/s00466-008-0312-0.
  18. Huang, X. and Xie, Y.M. (2010), "A further review of ESO type methods for topology optimization", Struct. Multidisc. Optim., 41(5), 671-683. https://doi.org/10.1007/s00158-010-0487-9.
  19. Huang, X. and Xie, Y.M. (2010), "A further review of ESO type methods for topology optimization", Struct. Multidisc. Optim., 41(5), 671-683. https://doi.org/10.1007/s00158-010-0487-9.
  20. Jeong, S., Seong, H.K., Kim, C.W. and Yoo, J. (2019), "Structural design considering the uncertainty of load positions using the phase field design method", Finite Elem. Anal. Des., 161, 1-15. https://doi.org/10.1115/1.1388075.
  21. Kewlani, G., Crawford, J. and Iagnemma, K. (2012), "A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty", Vehic. Syst. Dyn., 50(5), 749-774. https://doi.org/10.1080/00423114.2011.639897.
  22. Lee, D. and Shin, S. (2015), "Optimizing structural topology patterns using regularization of Heaviside function", Struct. Eng. Mech., 55(6), 1157-1176. https://doi.org/10.12989/sem.201 5.55.6.1157.
  23. Li, H., Luo, Z., Gao, L. and Qin, Q. (2018), "Topology optimization for concurrent design of structures with multipatch microstructures by level sets", Comput. Meth. Appl. Mech. Eng., 331, 536-561. https://doi.org/10.1016/j.cma.2017.11.033.
  24. Li, H., Luo, Z., Gao, L. and Walker, P. (2018), "Topology optimization for functionally graded cellular composites with metamaterials by level sets", Comput. Meth. Appl. Mech. Eng., 328, 340-364. https://doi.org/10.1016/j.cma.2017.09.008.
  25. Li, H., Luo, Z., Xiao, M., Gao, L. and Gao, J. (2019), "A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets", Comput. Meth. Appl. Mech. Eng., 356, 116-144. https://doi.org/10.1016/j.cma.2019.07.020.
  26. Li, H., Luo, Z., Zhang, N., Gao, L. and Brown, T. (2016), "Integrated design of cellular composites using a level-set topology optimization method", Comput. Meth. Appl. Mech. Eng., 309, 453-475. https://doi.org/10.1016/j.cma.2016.06.012.
  27. Liu, L., Yan, J. and Cheng, G. (2008), "Optimum structure with homogeneous optimum truss-like material", Comput. Struct., 86(13-14), 1417-1425. https://doi.org/10.1016/j.compstruc.2007.04.030.
  28. Lu, X., Xu, J., Zhang, H. and Wei, P. (2017), "Topology optimization of the photovoltaic panel connector in high-rise buildings", Struct. Eng. Mech., 62(4), 465-475. https://doi.org/10.12989/sem.2017.62.4.465.
  29. Marler, R.T. and Arora, J.S. (2004), "Survey of multi-objective optimization methods for engineering", Struct. Multidisc. Optim., 26(6), 369-395. https://doi.org/10.1007/s00158-003-0368-6.
  30. Marler, R.T. and Arora, J.S. (2010), "The weighted sum method for multi-objective optimization: new insights", Struct. Multidisc. Optim., 41(6), 853-862. https://doi.org/10.1007/s00158-009-0460-7.
  31. Ohmori, H. (2005), "Application of computational morphogenesis to structural design", Proceeding of Computational Science Symposium, Nagoya University, Japan, October.
  32. Sigmund, O. and Maute, K. (2013), "Topology optimization approaches", Struct. Multidisc. Optim., 48(6), 1031-1055. https://doi.org/10.1007/s00158-013-0978-6.
  33. Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optim., 16(1), 68-75. https://doi.org/10.1007/BF01214002.
  34. Teimouri, M. and Asgari, M. (2019), "Multi-objective BESO topology optimization for stiffness and frequency of continuum structures", Struct. Eng. Mech., 72(2), 181-190. https://doi.org/10.12989/sem.2019.72.2.181.
  35. Vicente, W.M., Zuo, Z.H., Pavanello, R., Calixto, T.K.L., Picelli, R. and Xie, Y.M. (2016), "Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures", Comput. Meth. Appl. Mech. Eng., 301, 116-136. https://doi.org/10.1016/j.cma.2015.12.012.
  36. Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
  37. Wang, Y., Wang, M.Y. and Chen, F. (2016), "Structure-material integrated design by level sets", Struct. Multidisc. Optim., 54(5), 1145-1156. https://doi.org/10.1007/s00158-016-1430-5.
  38. Wu, J., Luo, Z., Li, H. and Zhang, N. (2017), "A new hybrid uncertainty optimization method for structures using orthogonal series expansion", Appl. Math. Model., 45, 474-490. https://doi.org/10.1016/j.apm.2017.01.006.
  39. Wu, J., Luo, Z., Li, H. and Zhang, N. (2017), "Level-set topology optimization for mechanical metamaterials under hybrid uncertainties", Comput. Meth. Appl. Mech. Eng., 319, 414-441. https://doi.org/10.1016/j.cma.2017.03.002.
  40. Xia, L. and Breitkopf, P. (2015), "Design of materials using topology optimization and energy-based homogenization approach in Matlab", Struct. Multidisc. Optim., 52(6), 1229-1241. https://doi.org/10.1007/s00158-015-1294-0.
  41. Xia, L. and Breitkopf, P. (2017), "Recent advances on topology optimization of multiscale nonlinear structures", Arch. Comput. Meth. Eng., 24(2), 227-249. https://doi.org/10.1007/s11831-016-9170-7.
  42. Xia, L., Xia, Q., Huang, X. and Xie, Y.M. (2018), "Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review", Arch. Comput. Meth. Eng., 25(2), 437-478. https://doi.org/10.1007/s11831-016-9203-2.
  43. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C.
  44. Xiu, D. and Karniadakis, G.E. (2003), "Modeling uncertainty in flow simulations via generalized polynomial chaos", J. Comput. Phys., 187(1), 137-167. https://doi.org/10.1016/S0021-9991(03)00092-5.
  45. Xu, B. and Xie, Y.M. (2015), "Concurrent design of composite macrostructure and cellular microstructure under random excitations", Compos. Struct., 123, 65-77. https://doi.org/10.1016/j.compstruct.2014.10.037.
  46. Yang, R.J. and Chahande, A.I. (1995), "Automotive applications of topology optimization", Struct. Optim., 9(3-4), 245-249. https://doi.org/10.1007/BF01743977.
  47. Zhang, L., Song, B., Fu, J.J., Wei, S.S., Yang, L., Yan, C.Z., ... & Shi, Y.S. (2020), "Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization", J. Manuf. Proc., 56, 1166-1177. https://doi.org/10.1016/j.jmapro.2020.06.005.
  48. Zhang, Y., Xiao, M., Li, H., Gao, L. and Chu, S. (2018), "Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation", Comput. Mater. Sci., 155, 74-91. https://doi.org/10.1016/j.commatsci.2018.08.030.
  49. Zhao, J., Yoon, H. and Youn, B.D. (2019), "An efficient concurrent topology optimization approach for frequency response problems", Comput. Meth. Appl. Mech. Eng., 347, 700-734. https://doi.org/10.1016/j.cma.2019.01.004.
  50. Zheng, J., Luo, Z., Jiang, C. and Gao, J. (2019), "Robust topology optimization for concurrent design of dynamic structures under hybrid uncertainties", Mech. Syst. Signal Pr., 120, 540-559. https://doi.org/10.1016/j.ymssp.2018.10.026.
  51. Zhou, M. and Rozvany, G.I.N. (1991), "The COC algorithm, Part II: Topological, geometrical and generalized shape optimization", Comput. Meth. Appl. Mech. Eng., 89(1-3), 309-336. https://doi.org/10.1016/0045-7825(91)90046-9.
  52. Zhou, M. and Rozvany, G.I.N. (1991), "The COC algorithm, Part II: Topological, geometrical and generalized shape optimization", Comput. Meth. Appl. Mech. Eng., 89(1-3), 309-336. https://doi.org/10.1016/0045-7825(91)90046-9.
  53. Zuo, Z.H., Huang, X., Rong, J.H. and Xie, Y.M. (2013), "Multiscale design of composite materials and structures for maximum natural frequencies", Mater. Des., 51, 1023-1034. https://doi.org/10.1016/j.matdes.2013.05.014.