Acknowledgement
This project has received funding from European Social Fund (Project No. 09.3.3-LMT-K-712-01-0145) under a grant agreement with the Research Council of Lithuania (LMTLT).
References
- Abrishambaf, A., Barros, J.A.O. and Cunha, V. (2015), "Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests", Cement Concrete Compos., 57, 153-165. https://doi.org/10.1016/j.cemconcomp.2014.12.010.
- ACI 544.4R-88 (1988), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Michigan.
- Alsayed, S.H. (1993), "Flexural deflection of reinforced fibrous concrete beams", ACI Struct. J., 90, 72-76.
- Amin, A. and Gilbert, R.I. (2018), "Instantaneous crack width calculation for steel fiber reinforced concrete flexural members", ACI Struct. J., 115(2), 535-543. https://doi.org/10.14359/51701116
- Amin, A., Foster, S.J. and Kaufmann, W. (2017), "Instantaneous deflection calculation for steel fiber reinforced concrete one way members", Eng. Struct., 131, 438-445. http://dx.doi.org/10.1016/j.engstruct.2016.10.041.
- Amin, A., Foster, S.J. and Muttoni, A. (2015), "Derivation of the σ-w relationship for SFRC from prism bending tests", Struct. Concrete, 16(1), 93-105. https://doi.org/10.1002/suco.201400018.
- Amin, A., Foster, S.J. and Watts, M. (2016), "Modelling the tension stiffening effect in SFR-RC", Mag Concrete Res., 68(7), 339-352. https://doi.org/10.1680/macr.15.00188.
- Amin, A., Foster, S.J., Gilbert, R.I. and Kaufmann, W. (2017), "Material characterisation of macro synthetic fibre reinforced concrete", Cement Concrete Compos., 84, 124-133. https://doi.org/10.1016/j.cemconcomp.2017.08.018.
- Ashour, S.A. and Wafa, F.F. (1993), "Flexural behavior of high-strength fiber reinforced concrete beams", ACI Struct. J., 90, 279-287.
- ASTM C1609/C1609M-12 (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), American Society for Testing and Materials.
- ASTM C496-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, American Society for Testing and Material.
- Barros, J.A.O. and Figueiras, J. (1999), "Flexural behavior of SFRC: testing and modeling", J. Mater. Civil Eng., ASCE, 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331).
- Barros, J.A.O., Santos, S.P.F., Lourenco, L.A.P. and Goncalves, D. (2008), "Flexural behaviour of steel fibre reinforced selfcompacting concrete laminar structures", Proceedings, 1st Spanish Congress on Self-Compacting Concrete, Valencia, Spain, February.
- Barros, J.A.O., Taheri, M. and Salehian, H. (2017), "A model to predict the crack width of FRC members reinforced with longitudinal bars", ACI Spec. Publ., SP-319, 2.1-2.16.
- Broberg, K.B. (1999), Cracks and Fracture, Elsevier.
- Campione, G. (2008), "Simplified flexural response of steel fiber-reinforced concrete beams", J. Mater. Civil Eng., ASCE, 20(4), 283-293. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:4(283).
- Campione, G., La Mendola, L. and Papia, M. (2006), "Shear strength of fiber reinforced beams with stirrups", Struct. Eng. Mech., 24(1), 107-136. https://doi.org/10.12989/sem.2006.24.1.107.
- Chu S.H. and Kwan A.K.H. (2021), "Crack mitigation utilizing enhanced bond of rebars in SFRC", Struct., 33, 4141-4147. https://doi.org/10.1016/j.istruc.2021.06.095.
- Comite Euro-International du Beton (CEB) (2013), CEB-FIP Model Code 2010: Model Code for Concrete Structures, Ernst & Sohn, Wiley, Berlin, Germany.
- Craig, R.J. (1987), "Flexural behavior and design of reinforced fiber concrete members", ACI Spec. Publ., 105, 517-564.
- Cunha, V.M.C.F. (2010), "Steel fibre reinforced self-compacting concrete (from micro-mechanics to composite behaviour)", Doctoral Thesis, University of Minho.
- Cunha, V.M.C.F., Barros, J.A.O. and Sena-Cruz, J.M. (2010), "Pullout behaviour of steel fibres in self-compacting concrete", J. Mater. Civil Eng., ASCE, 22(1), 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000001.
- DAfStb (2012), Deutscher Ausschuss fur Stahlbeton, Deutscher Ausschuss Fur Stahlbeton, Budapester Strasse 31, D-10787 Berlin.
- de Montaignac, R., Massicotte, B. and Charron, J.P. (2012), "Design of SFRC structural elements: flexural behaviour prediction", Mater. Struct., 45(4), 623-636. https://doi.org/10.1617/s11527-011-9785-y.
- Deluce, J.R. and Vecchio, F.J. (2013), "Cracking behavior of steel fiber reinforced concrete members containing conventional reinforcement", ACI Struct. J., 110(3), 481-490.
- Domski, J. and Zakrzewski, M. (2020), "Deflection of steel fiber reinforced concrete beams based on waste sand", Mater., 13(2), 392. https://doi.org/10.3390/ma13020392.
- Dundar, C., Tanrikulu, A.K. and Frosch, R.J. (2015), "Prediction of load-deflection behaviour of multi-span FRP and steel reinforced concrete beams", Compos. Struct., 132, 680-693. https://doi.org/10.1016/j.compstruct.2015.06.018.
- EN 14651 (2005), Test Method for Metallic Fibered Concrete-Measuring the Flexural Tensile Strength (Limit of Proportionality (Lop), Residual), European Committee for Standardization.
- Ezeldin, A.S. and Shiah, T.W. (1995), "Analytical immediate and long-term deflections of fiber-reinforced concrete beams", J. Struct. Eng., 121, 727-738. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(727).
- Gilbert, R.I. and Warner, R.F. (1978), "Tension stiffening in reinforced concrete slabs", J. Struct. D., ASCE, 104(12), 1885-1900. https://doi.org/10.1061/JSDEAG.0005054.
- Gribniak, V., Kaklauskas, G., Kwan, A.K.H., Bacinskas, D. and Ulbinas, D. (2012), "Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement", Eng. Struct., 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032.
- Harvinder, S. (2020), "Closed-form solution for shear strength of steel fiber-reinforced concrete beams", ACI Struct. J., 117(3), 261-269.
- Hsu, C.T.T., He, R.L. and Ezeldin, S. (1992), "Load-deformation behavior of steel fiber reinforced concrete beams", ACI Struct. J., 89, 650-657.
- JSCE (1984), Method of Tests for Flexural Strength and Flexural Toughness of Steel Fiber Reinforced Concrete. Part III-2 Method of Tests for Steel Fiber Reinforced Concrete, SF4 - The Japan Society of Civil Engineers, 3, 58-61.
- Kaklauskas, G. (2017), "Crack model for RC members based on compatibility of stress-transfer and mean-strain approaches", J. Struct. Eng., ASCE, 143(9), 04017105. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001842.
- Kaklauskas, G. and Ghaboussi, J. (2001), "Stress-strain relations for cracked tensile concrete from RC beam tests", J. Struct. Eng., ASCE, 127(1), 64-73. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64).
- Kaklauskas, G. and Gribniak, V. (2011), "Eliminating shrinkage effect from moment-curvature and tension-stiffening relationships of reinforced concrete members", J. Struct. Eng., ASCE, 137(12), 1460-1469. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000395.
- Kaklauskas, G. and Gribniak, V. (2016), "Hybrid tension stiffening approach for decoupling shrinkage effect in cracked reinforced concrete members", J. Eng. Mech., ASCE, 142(11), 04016085. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001148.
- Kaklauskas, G. and Sokolov, A. (2021), "A peculiar value of M to Mcr ratio: Reconsidering assumptions of curvature analysis of reinforced concrete beams", J. Appl. Eng. Sci., 7, 100053. https://doi.org/10.1016/j.apples.2021.100053.
- Kaklauskas, G., Gribniak, V., Meskenas, A., Bacinskas, D., Juozapaitis, A., Sokolov, A. and Ulbinas, D. (2014), "Experimental investigation of the deformation behavior of SFRC beams with an ordinary reinforcement", Mech. Compos. Mater., 50(4), 417-426. https://doi.org/10.1007/s11029-014-9428-9.
- Kaklauskas, G., Gribniak, V., Salys, D., Sokolov, A. and Meskenas, A. (2011), "Tension-stiffening model attributed to tensile reinforcement for concrete flexural members", Procedia Eng., 14, 1433-1438. https://doi.org/10.1016/j.proeng.2011.07.180.
- Kaklauskas, G., Ramanauskas, R. and Jakubovskis R. (2017), "Mean crack spacing modelling for RC tension elements", Eng. Struct., 150(1), 843-851. https://doi.org/10.1016/j.engstruct.2017.07.090.
- Lackner, R. and Mang, H.A. (2003), "Scale transition in steel-concrete interaction. Part I: Model", J. Eng. Mech., ASCE, 129(4), 393-402. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(393).
- Lehmann, M. and Glodkowska, W. (2021), "Shear capacity and behaviour of bending reinforced concrete beams made of steel fibre-reinforced waste sand concrete", Mater., 14(11), 2996. https://doi.org/10.3390/ma14112996.
- Lim, T., Paramasivam, P. and Lee, S. (1987), "Behavior of reinforced steel-fiber-concrete beams in flexure", J. Struct. Eng., 113, 2439-2458. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2439).
- Marti, P., Alvarez, M., Kaufmann, W. and Sigrist V. (1998), "Tension chord model for structural concrete", Struct. Eng. Int., 8(4), 287-298. https://doi.org/10.2749/101686698780488875.
- Mazaheripour, H., Barros, J.A.O. and Sena-Cruz, J.M. (2016), "Tension-stiffening model for FRC reinforced by hybrid FRP and steel bars", Compos. Part B J., 88, 162-181. http://dx.doi.org/10.1016/j.compositesb.2015.10.042.
- Mazaheripour, H., Barros, J.A.O., Soltanzadeh, F. and Sena-Cruz J. (2016), "Deflection and cracking behavior of SFRSCC beams reinforced with hybrid prestressed GFRP and steel reinforcements", Eng. Struct., 125, 546-565. https://doi.org/10.1016/j.engstruct.2016.07.026.
- Meskenas, A., Ramanauskas, R., Sokolov, A., Bacinskas, D. and Kaklauskas, G. (2021), "Residual stress-strain relations inversely derived from experimental moment-curvature response of RC beams with fibres compared to the recommendations of design codes", Struct., 34, 3363-3375. https://doi.org/10.1016/j.istruc.2021.09.070.
- Minelli, F. and Plizzari, G.A. (2015), "Derivation of a simplified stress-crack width law for fiber reinforced concrete through a revised round panel test", Cement Concrete Compos., 58, 95-104. https://doi.org/10.1016/j.cemconcomp.2015.01.005.
- Naaman, A.E. (2003), "Strain hardening and deflection hardening fiber reinforced cement composites", Proc. 4th Int. RILEM Workshop on High Performance Fiber Reinforced Cement Composites, Ann Abor, University of Michigan, 95-113.
- Neumark, S. (1965), Solution of Cubic and Quartic Equations, Pergamon Press, Headington Hall, Oxford.
- Ng, P.L., Lam, J.Y.K. and Kwan, A.K.H. (2010), "Tension stiffening in concrete beams. Part 1: FE analysis", Proc. Inst. Civil Eng.: Struct. Build., 163(1), 19-28. https://doi.org/10.1680/stbu.2009.163.1.19.
- RILEM TC 162-TDF (2000), "Test and design methods for steel fibre reinforced concrete: Recommendations", Mater. Struct., 33, 3-5. https://doi.org/10.1007/BF02481689.
- RILEM TC 162-TDF (2002), "Test and design methods for steel fibre reinforced concrete: Design of steel fibre reinforced concrete using the σ-w method: Principles and applications", Mater. Struct., 35, 262-278. https://doi.org/10.1007/BF02482132.
- RILEM TC 162-TDF (2003), "Test and design methods for steel fibre reinforced concrete: σ-ε-design method: Final recommendation", Mater. Struct., 36, 560-567. https://doi.org/10.1007/BF02480834.
- RILEM TC 162-TDF. (2001), "Test and design methods for steel fibre reinforced concrete: Uni-axial tension test for steel fibre reinforced concrete", Mater. Struct., 34, 3-6. https://doi.org/10.1007/BF02482193.
- Shi, Z. (2009), Crack Analysis in Structural Concrete, Burlington, USA, Butterworth-Heinemann Elsevier.
- Skocek, J. and Stang, H. (2008), "Inverse analysis of the wedge-splitting test", Eng. Fract. Mech., 75, 3173-3188. https://doi.org/10.1016/j.engfracmech.2007.12.003.
- Soltanzadeh, F., Cunha, V.M.C.F. and Barros, J.A.O. (2019), "Assessment of different methods for characterization and simulation of post-cracking behavior of self-compacting fiber reinforced concrete", Constr. Build. Mater., 227, 116704. https://doi.org/10.1016/j.conbuildmat.2019.116704.
- Stahli, P. (2008), "Ultra-fluid, oriented hybrid-fibre-concrete", Doctoral Thesis, Diss. ETH No. 17996, ETH Zurich.
- Taheri, M., Barros, J.A.O. and Salehian, H. (2012), "Parametric study of the use of strain softening/hardening FRC for RC elements failing in bending", J. Mater. Civil Eng., ASCE, 24(3), 259-274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000373.
- Tan, K.H., Paramasivam, P. and Tan, K.C. (1994), "Instantaneous and long-term deflections of steel fiber reinforced concrete beams", ACI Struct. J., 91, 384-393.
- Tiberti, G., Minelli, F. and Plizzari, G.A. (2015), "Cracking behavior in reinforced concrete members with steel fibers: a comprehensive experimental study", Cement Concrete Res., 68, 24-34. https://doi.org/10.1016/j.cemconres.2014.10.011.
- Torres, L., Barris, C., Kaklauskas, G. and Gribniak, V. (2015), "Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar", Struct. Eng. Mech., 53(5), 997-1016. https://doi.org/10.12989/sem.2015.53.5.997.
- Torres, L., Lopez-Almansa, F. and Bozzo, L.M. (2004), "Tension-stiffening model for cracked flexural concrete members", J. Struct. Eng., ASCE, 130(8), 1242-1251. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1242).
- UNI 11039 (2003), Steel Fiber Reinforced Concrete - Part I: Definitions, Classification Specification and Conformity - Part II: Test Method for Measuring First Crack Strength and Ductility Indexes, Italian Board for Standardization.
- Wu, H.Q. and Gilbert, R.I. (2009), "Modeling short-term tension stiffening in reinforced concrete prism using a continuum-based finite element model", Eng. Struct., 31(10), 2380-2391. https://doi.org/10.1016/j.engstruct.2009.05.012.
- Wu, K., Chen, F., Lin, J.F., Zhao, J.X. and Zheng, H.M. (2021), "Experimental study on the interfacial bond strength and energy dissipation capacity of steel and steel fibre reinforced concrete (SSFRC) structures", Eng. Struct., 235, 112094. https://doi.org/10.1016/j.engstruct.2021.112094.