DOI QR코드

DOI QR Code

Semi-numerical simulation for effects of different loadings on vibration behavior of 2D systems

  • Rao, Li (Physical Science and Technology College, Yichun University) ;
  • Lin, Chao (Physical Science and Technology College, Yichun University) ;
  • Zhang, Chenglin (Physical Science and Technology College, Yichun University)
  • Received : 2019.10.15
  • Accepted : 2021.08.13
  • Published : 2022.02.10

Abstract

Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), an investigation on the free vibrations of 2D plate systems with nano-dimensions has been provided taking into account the effects of different mechanical loadings. In order to capture different mechanical loadings, a general form of variable compressive load applied in the axial direction of the plate system has been introduced. The studied plate has been constructed from two types of particles which results in graded material properties and nanoscale pores. The established formulation for the plate is in the context of a novel shear deformable model and the equations have been solved via a semi-numerical trend. Presented results indicate the prominence of material composition, nonlocal coefficient, strain gradient coefficient and boundary conditions on vibrational frequencies of nano-size plate.

Keywords

References

  1. Abdullah, W.N., Khalaf, B.S., Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2021), "Thermal effects on dynamic response of GOP-Reinforced beams under blast load", Adv. Concrete Constr., 12(3), 167-174. https://doi.org/10.12989/acc.2021.12.3.167.
  2. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Couple. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  3. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020b), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  4. Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020a), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
  5. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  6. Al-Toki, M.H., Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Abdullah, W.N. (2021), "Analyzing dynamic characteristics of nonlocal porous graded beams under impulse and thermal loading", Adv. Comput. Des., 6(4), 301-317. https://doi.org/10.12989/acd.2021.6.4.301.
  7. Barati, M.R. (2017), "Coupled effects of electrical polarizationstrain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
  8. Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  9. Barati, M.R. and Zenkour, A.M. (2019a), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
  10. Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L. and Shi, J. (2021), "Intelligent model-based integrity assessment of nonstationary mechanical system", J. Web Eng., 253-280. https://doi.org/10.13052/jwe1540-9589.2022.
  11. Cheng, H., Sun, L., Wang, Y. and Chen, X. (2021), "Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures", Int. J. Fatig., 106386. https://doi.org/10.1016/j.ijfatigue.2021.106386.
  12. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of heterogeneous nonlocal beams in thermal environment", Couple. Syst. Mech., 6(3), 251-272. https://doi.org/10.12989/csm.2017.6.3.251.
  13. Ebrahimi, F. and Barati, M.R. (2018a), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24(8), 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
  14. Ebrahimi, F. and Barati, M.R. (2018b), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021.
  15. Ebrahimi, F. and Barati, M.R. (2018c), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  16. Ebrahimi, F. and Barati, M.R. (2018d), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
  17. Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stress., 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
  18. Ebrahimi, F. and Barati, M.R. (2019b), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  19. Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Wave. Rand. Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
  20. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  21. Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.
  22. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020a), "Nonlinear vibration characteristics of refined higher-order multi-phase piezo-magnetic nanobeams", Eur. Phys. J. Plus, 135(5), 439. https://doi.org/10.1140/epjp/s13360-020-00399-4.
  23. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020e), "Static stability analysis of smart nonlocal thermo-piezomagnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.
  24. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020b), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  25. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020c), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nanocomposites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  26. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020d), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  27. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-96. https://doi.org/10.12989/amr.2019.8.3.179.
  28. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
  29. Hu, Y., xiang Qing, J., Liu, Z.H., Conrad, Z.J., Cao, J.N. and Zhang, X.P. (2021), "Hovering efficiency optimization of the ducted propeller with weight penalty taken into account", Aerosp. Sci. Technol., 117, 106937. https://doi.org/10.1016/j.ast.2021.106937.
  30. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastr. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  31. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479.
  32. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  33. Liu, C., Gao, X., Chi, D., He, Y., Liang, M. and Wang, H. (2021), "On-line chatter detection in milling using fast kurtogram and frequency band power", Eur. J. Mech.-A/Solid., 104341. https://doi.org/10.1016/j.euromechsol.2021.104341.
  34. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  35. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  36. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  37. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  38. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  39. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  40. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  41. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  42. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  43. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  44. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  45. Reddy, J.N. (1990), "A general non-linear third-order theory of plates with moderate thickness", Int. J. Nonlin. Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U.
  46. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  47. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  48. Zhang, C. and Ali, A. (2021), "The advancement of seismic isolation and energy dissipation mechanisms based on friction", Soil Dyn. Earthq. Eng., 146, 106746. https://doi.org/10.1016/j.soildyn.2021.106746.
  49. Zhong, Q., Yang, J., Shi, K., Zhong, S., Li, Z. and Sotelo, M.A. (2021), "Event-triggered $ H_ {∞} $ load frequency control for multi-area nonlinear power systems based on non-fragile proportional integral control strategy", IEEE Tran. Intel. Transp. Syst., 1-11. https://doi.org/10.1109/TITS.2021.3110759.