References
- Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099.
- Alencar, G., de Jesus, A.M., Calcada, R.A. and da Silva, J.G.S. (2018), "Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration", Eng. Struct., 166, 46-61. https://doi.org/10.1016/j.engstruct.2018.02.058.
- Alqedra, M., Arafa, M. and Ismail, M. (2011), "Optimum cost of prestressed and reinforced concrete beams using genetic algorithms", J. Artif. Intel., 4(1), 76-88. https://doi.org/10.3923/jai.2011.76.88
- Alwosheel, A., van Cranenburgh, S. and Chorus, C.G. (2018), "Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis", J. Choice Model., 28, 167-182. https://doi.org/10.1016/j.jocm.2018.07.002.
- Ataei, S., Tajalli, M. and Miri, A. (2016), "Assessment of load carrying capacity and fatigue life expectancy of a monumental masonry arch bridge by field load testing: A case study of Veresk", Struct. Eng. Mech., 59(4), 703-718. https://doi.org/10.12989/sem.2016.59.4.703.
- Aygul, M., Al-Emrani, M. and Urushadze, S. (2012), "Modelling and fatigue life assessment of orthotropic bridge deck details using FEM", Int. J. Fatig., 40, 129-142. https://doi.org/10.1016/j.ijfatigue.2011.12.015.
- Basterrech, S., Mohammed, S., Rubino, G. and Soliman, M. (2011), "Levenberg-Marquardt training algorithms for random neural networks", Comput. J., 54(1), 125-135. https://doi.org/10.1093/comjnl/bxp101.
- Brandimarte, P. (2014), Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics, John Wiley & Sons.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput. Aid. Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Chan, T.H., Zhou, T., Li, Z. and Guo, L. (2005), "Hot spot stress approach for Tsing Ma Bridge fatigue evaluation under traffic using finite element method", Struct. Eng. Mech., 19(3), 261-280. https://doi.org/10.12989/sem.2005.19.3.261.
- Chan, W.K.V. (2013), Theory and Applications of Monte Carlo Simulations, BoD-Books on Demand. https://doi.org/10.1007/978-3-642-25349-2_111.
- Chen, Y., Yan, J., Feng, J. and Sareh, P. (2021), "Particle swarm optimization-based metaheuristic design generation of nontrivial flat-foldable origami tessellations with degree-4 vertices", J. Mech. Des., 143(1), 011703. https://doi.org/10.1115/1.4047437.
- Deng, L. and Cai, C. (2010), "Bridge model updating using response surface method and genetic algorithm", J. Bridge Eng., 15(5), 553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092.
- Fan, W., Chen, Y., Li, J., Sun, Y., Feng, J., Hassanin, H. and Sareh, P. (2021), "Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications", Struct., 33, 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110.
- Fryba, L. (1995), "History of Winkler foundation", Vehic. Syst. Dyn., 24(Sup1), 7-12. https://doi.org/10.1080/00423119508969611.
- Gomes, H.M. (2011), "Truss optimization with dynamic constraints using a particle swarm algorithm", Exp. Syst. Appl., 38(1), 957-968. https://doi.org/10.1016/j.eswa.2010.07.086.
- Harrison, R.L. (2010), "Introduction to Monte Carlo simulation", AIP Conf. Proc., 1204(1), 17-21. https://doi.org/10.1063/1.3295638.
- HasancEbi, O. and Dumlupinar, T. (2013), "Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks", Comput. Struct., 119, 1-11. https://doi.org/10.1016/j.compstruc.2012.12.017.
- Hester, D., Koo, K., Xu, Y., Brownjohn, J. and Bocian, M. (2019), "Boundary condition focused finite element model updating for bridges", Eng. Struct., 198, 109514. https://doi.org/10.1016/j.engstruct.2019.109514.
- Isojeh, B., El-Zeghayar, M. and Vecchio, F.J. (2019), "Numerical analysis of reinforced concrete and steel-fiber concrete elements under fatigue loading", J. Struct. Eng., 145(11), 04019126. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002349.
- Jung, D.S. and Kim, C.Y. (2013), "Finite element model updating of a simply supported skewed PSC I-girder bridge using hybrid genetic algorithm", KSCE J. Civil Eng., 17(3), 518-529. https://doi.org/10.1007/s12205-013-0599-z.
- Kalita, K., Nasre, P., Dey, P. and Haldar, S. (2018), "Metamodel based multi-objective design optimization of laminated composite plates", Struct. Eng. Mech., 67(3), 301-310. https://doi.org/10.12989/sem.2018.67.3.301.
- Kaveh, A. and Bakhshpoori, T. (2019), Metaheuristics: Outlines, MATLAB Codes and Examples, Springer.
- Kwak, Y.H. and Ingall, L. (2007), "Exploring Monte Carlo simulation applications for project management", Risk Manage., 9(1), 44-57. https://doi.org/10.1057/palgrave.rm.8250017.
- Levin, R.I. and Lieven, N. (1998), "Dynamic finite element model updating using neural networks", J. Sound Vib., 210(5), 593-607. https://doi.org/10.1006/jsvi.1997.1364.
- Li, Y., Feng, X.Q., Cao, Y.P. and Gao, H. (2010), "A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures", Int. J. Solid. Struct., 47(14-15), 1888-1898. https://doi.org/10.1016/j.ijsolstr.2010.03.026.
- Lin, S.T., Lu, Y., Alamdari, M.M. and Khoa, N.L. (2020), "Field test investigations for condition monitoring of a concrete culvert bridge using vibration responses", Struct. Control Hlth. Monit., 27(10), e2614. https://doi.org/10.1002/stc.2614.
- Lu, Y. and Tu, Z. (2004), "A two-level neural network approach for dynamic FE model updating including damping", J. Sound Vib., 275(3-5), 931-952. https://doi.org/10.1016/S0022-460X(03)00796-X.
- Maind, S.B. and Wankar, P. (2014), "Research paper on basic of artificial neural network", Int. J. Recent Innov. Trend. Comput. Commun., 2(1), 96-100. https://doi.org/10.17762/ijritcc.v2i1.2920.
- Miao, S., Koenders, E. and Knobbe, A. (2015), "Automatic baseline correction of strain gauge signals", Struct. Control Hlth. Monit., 22(1), 36-49. https://doi.org/10.1002/stc.1658.
- Momeni, E., Nazir, R., Armaghani, D.J. and Maizir, H. (2014), "Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN", Measure., 57, 122-131. https://doi.org/10.1016/j.measurement.2014.08.007.
- Mordechai, S. (2011), Applications of Monte Carlo Method in Science and Engineering, Intech.
- Mortazavi, A., Togan, V. and Nuhoglu, A. (2017), "An integrated particle swarm optimizer for optimization of truss structures with discrete variables", Struct. Eng. Mech., 61(3), 359-370. https://doi.org/10.12989/sem.2017.61.3.359
- Nikoo, M., Torabian Moghadam, F. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng., 2015, Article ID 849126, https://doi.org/10.1155/2015/849126.
- Okasha, N.M. and Frangopol, D.M. (2010), "Advanced modeling for efficient computation of life-cycle performance prediction and service-life estimation of bridges", J. Comput. Civil Eng., 24(6), 548-556. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000060.
- Park, Y.S., Kim, S., Kim, N. and Lee, J.J. (2017), "Finite element model updating considering boundary conditions using neural networks", Eng. Struct., 150, 511-519. https://doi.org/10.1016/j.engstruct.2017.07.032.
- Satoh, K., Yoshikawa, N., Nakano, Y. and Yang, W.J. (2001), "Whole learning algorithm of the neural network for modeling nonlinear and dynamic behavior of RC members", Struct. Eng. Mech., 12(5), 527-540. https://doi.org/10.12989/sem.2001.12.5.527.
- Shabbir, F. and Omenzetter, P. (2015), "Particle swarm optimization with sequential niche technique for dynamic finite element model updating", Comput. Aid. Civil Infrastr. Eng., 30(5), 359-375. https://doi.org/10.1111/mice.12100.
- Shafahi, Y. and Bagherian, M. (2013), "A customized particle swarm method to solve highway alignment optimization problem", Comput. Aid. Civil Infrastr. Eng., 28(1), 52-67. https://doi.org/10.1111/j.1467-8667.2012.00769.x.
- Shi, L., Lin, S., Lu, Y., Ye, L. and Zhang, Y. (2018), "Artificial neural network based mechanical and electrical property prediction of engineered cementitious composites", Constr. Build. Mater., 174, 667-674. https://doi.org/10.1016/j.conbuildmat.2018.04.127.
- Su, Z. and Ye, L. (2005), "Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm: Part I-methodology and database development", J. Intel. Mater. Syst. Struct., 16(2), 97-111. https://doi.org/10.1177%2F1045389X05047599. https://doi.org/10.1177%2F1045389X05047599
- Wang, S.C. (2012), Interdisciplinary Computing in Java Programming, Vol. 743, Springer Science & Business Media.
- Yan, G.R., Duan, Z.D. and Ou, J.P. (2007), "Application of genetic algorithm on structural finite element model updating", J. Harbin Inst. Technol., 2, 181-186.
- Zivanovic, S., Pavic, A. and Reynolds, P. (2007), "Finite element modelling and updating of a lively footbridge: The complete process", J. Sound Vib., 301(1-2), 126-145. https://doi.org/10.12989/sem.2014.52.6.1099.