DOI QR코드

DOI QR Code

WSbTi의 소성온도에 따른 VWSbTi 촉매의 NH3-SCR 효율 연구

A Study on the NH3-SCR Activity of the VWSbTi According to the Calcination Temperature of WSbTi

  • 어은겸 (경기대학교 일반대학원 환경에너지공학과) ;
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Eo, Eun Gyeom (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Shin, Jung Hun (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 투고 : 2021.12.02
  • 심사 : 2022.01.07
  • 발행 : 2022.02.10

초록

본 연구에서는 NH3-SCR에서 VWTi촉매의 저온 탈질효율 증진을 위해 Sb을 첨가하여 실험을 수행하였으며 Sb 첨가에 있어 다양한 소성온도(400~700 ℃)에서 제조하였다. NH3-SCR 실험 결과 Sb 소성온도 500~600 ℃에 해당하는 VWSbTi(500)와 VWSbTi(600) 촉매가 300 ℃ 이하의 저온에서 가장 우수한 탈질성능을 나타냈으며, 소성온도에 따른 물리화학적 특성을 확인하고자 BET, XRD, Raman, XPS, H2-TPR, NH3-TPD 분석을 수행하였다. VWSbTi(500)와 VWSbTi(600)의 경우 W=O종의 생성에 따라 암모니아 산점이 증가하였으며 텅스텐의 전자밀도 증가에 따른 우수한 redox 특성으로 저온에서 우수한 활성을 나타내었다. 또한 VWSbTi(700)의 경우 V2O5 결정구조가 형성되어 활성이 저하됨에 따라 Sb 첨가과정에 있어 최적의 소성온도를 확인하였다.

In this study, an experiment was performed by adding Sb during NH3-selective catalytic reduction (NH3-SCR) while varying calcination temperatures from 400 to 700 ℃ to improve the low temperature denitrification efficiency of VWTi catalyst. As a result, VWSbTi(500) and VWSbTi(600) catalysts corresponding to Sb calcination temperatures of 500~600 ℃ showed the best denitrification performance at low temperatures below 300 ℃. BET, XRD, Raman, XPS, H2-TPR, and NH3-TPD analyses were performed In order to confirm physicochemical properties according to the calcination temperature. In the case of VWSbTi(500) and VWSbTi(600), an acid site increased with the generation of W=O species, and superb activity at low temperatures was exhibited due to the excellent redox characteristics and increase in electron density of tungsten. Furthermore, in the case of VWSbTi(700), as the crystalline V2O5 structure was formed, the denitrification efficiency decreased. Thus the optimum calcination temperature during Sb addition process was confirmed.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20181110200060).

참고문헌

  1. T. Boningari and P. G. Smirniotis, Impact of nitrogen oxides on the environment and human health : Mn-based materials for the NOx abatement, Curr. Opin. Chem. Eng., 13, 133-141 (2016). https://doi.org/10.1016/j.coche.2016.09.004
  2. Forzatti, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A-Gen., 222, 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  3. D. H. Kim, D. W. Kwon, and S. C. Hong, Structural characteristics of V-based catalyst with Sb on selective catalytic NOx reduction with NH3, Appl. Surf. Sci., 538, 148088 (2021). https://doi.org/10.1016/j.apsusc.2020.148088
  4. S. B. Kim, G. R. Choi, J. H. Shin, and S. C. Hong, Selective Catalytic Reduction(SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts, Appl. Chem. Eng., 32, 35-41 (2021). https://doi.org/10.14478/ACE.2020.1097
  5. F. Liu, K. Asakura, H. He, Y. Liu, W. shan, X. Shi and C. Zhang, Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3, Catal. Today, 164, 520-527 (2011). https://doi.org/10.1016/j.cattod.2010.10.008
  6. J. Li, Z. Song, P. Ning, Q. Zhang, X. Liu, H. Li and Z. Huang, Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst, J. Rare Earths, 33, 726-735 (2015). https://doi.org/10.1016/s1002-0721(14)60477-4
  7. S. H. Choi, S. P. Cho, J. Y. Lee, S. H. Hong, S. C. Hong and S. I. Hong, The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature, J. Mol. Catal. A-Chem., 304, 166-173 (2009). https://doi.org/10.1016/j.molcata.2009.02.008
  8. J. K. Lai and I. E. Wachs, A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5-WO3/TiO2 Catalysts, ACS Catal., 8, 6537-6551 (2018). https://doi.org/10.1021/acscatal.8b01357
  9. R. Y. Saleh, I. E. Wachs, S. S. Chan and C. C. Chersish, The interaction of V2O5 with TiO2(anatase): Catalyst evolution with calcination temperature and O-xylene oxidation, J. Catal., 98, 102-114 (1986). https://doi.org/10.1016/0021-9517(86)90300-3
  10. L. Zong, F. Dong, G. Zhang, W. Han, Z. Tang and J. Zhang, Highly Efficient Mesoporous V2O5/WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx: Effect of the Valence of V on the Catalytic Performance, Catal. Surv. Asia., 21, 103-113 (2017). https://doi.org/10.1007/s10563-017-9229-y
  11. Y. Qui, B. Liu, J. Du, Q. Tang, Z. Liu, R. Liu and C. Tao, The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR, Chem. Eng. J., 294, 264-272 (2016). https://doi.org/10.1016/j.cej.2016.02.094
  12. X. Zhao, Y. Yan, L. Mao, M. Fu, H. Zhao, L. Sun, Y. Xiao and G. Dong, A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts, RSC Adv., 8, 31081-31093 (2018). https://doi.org/10.1039/c8ra02857e
  13. X. Wu, R. Wang, Y Du, C. Zou, H. Meng and X. Xie, Performance enhancement of NH3-SCR via employing hydrotalcite-like precursor to induce the decoration of NiO by TiO2 phase, Mol. Catal., 467, 150-160 (2019). https://doi.org/10.1016/j.mcat.2019.02.004
  14. H. Chen, Y. Xia, R. Fang, H. Huang, Y. Gan, C. Liang, J. Zhang, W. Zhang and X. Liu, The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts, Appl. Surf. Sci., 459, 639-646 (2018). https://doi.org/10.1016/j.apsusc.2018.08.046
  15. J. H. Shin, G. R. Choi and S. C. Hong, Vanadium catalyst based on a tungsten trioxide structure modified with antimony in NH3-selective catalytic reduction for improved low-temperature activity, Appl. Surf. Sci., 574, 151571 (2022). https://doi.org/10.1016/j.apsusc.2021.151571
  16. J. Engweiler, J. Harf and A. Baiker, WOx/TiO2 Catalysts Prepared by Grafting of Tungsten Alkoxides: Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH3, J. Catal., 159, 259-269 (1996). https://doi.org/10.1006/jcat.1996.0087
  17. L. Chen, D Weng, J. Wang, D. Weng and L. Cao, Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions, Chin. J. Catal., 39, 1804-0813 (2018). https://doi.org/10.1016/s1872-2067(18)63129-8
  18. L. Lietti, j. L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello and F. Bregani, Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia, Catal. Today, 29, 143-148 (1996). https://doi.org/10.1016/0920-5861(95)00250-2
  19. J. P. chen and R. T. Yang, Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3, J. Catal., 125, 411-420 (1990). https://doi.org/10.1016/0021-9517(90)90314-A
  20. S. M. Lee, S. S. Kim and S. C. Hong, Systematic mechanism study of the high temperature SCR of NOx by NH3 over a W/TiO2 catalyst, Chem. Eng. Sci., 79, 177-185 (2012). https://doi.org/10.1016/j.ces.2012.05.032