DOI QR코드

DOI QR Code

Effect of Column Shear Deformation on Seismic Collapse Risk of Steel Special Moment Frames

기둥 전단변형에 대한 고려가 철골 특수모멘트골조의 붕괴위험도 평가에 미치는 영향

  • Han, Sang Whan (Dept. of Architectural Engineering, Hanyang University) ;
  • Kim, Taeo (Dept. of Architectural Engineering, Hanyang University)
  • Received : 2022.07.15
  • Accepted : 2022.11.07
  • Published : 2022.12.30

Abstract

Nonlinear numerical models to be used for seismic performance evaluation are generally constructed based on measured seismic behavior of structural members and systems. The shear deformation in a column member has been typically considered insignificant in the inelastic range. However, an increase in lateral drifts due to the inclusion of shear deformation may impact the degree of damage in structural members and the onset of collapse. Therefore, for a column member, it is important to include the shear deformation in column numerical models as it can have a significant impact on predicting the structure's response. The aim of this study is to evaluate the effect of column shear deformation on the collapse risk of steel special moment frames (SMFs). Numerical models were constructed with and without considering column shear deformation. It was shown that column shear deformation had a significant effect on the lateral stiffness of the steel SMFs and increased in moment demand due to the P-Delta effect. Such increase in moment demands could affect the collapse mechanism of steel SMFs under seismic loads. Without considering the shear deformation, the collapse risk of SMFs may be also underestimated.

Keywords

Acknowledgement

이 연구는 2022년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:2021R1A6A3A0108744412

References

  1. ASCE/SEI 7 (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  2. ASCE/SEI 41 (2017). Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, VA, USA.
  3. ATC (2009). Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings, PEER/ATC 72-1; Applied Technology Council, Redwood City, CA, USA.
  4. Bech, D., Tremayne, B., & Houston, J. (2015). Proposed changes to steel column evaluation criteria for existing buildings, Improving the Seismic Performance of Existing Buildings and Other Structures 2015, San Francisco, CA, USA, December.
  5. Eads, L., Miranda, E., Krawinkler, H., & Lignos, D. G. (2013). An efficient method for estimating the collapse risk of structures in seismic regions, Earthquake Engineering and Structural Dynamics, 42(1), 25-41, https://doi.org/10.1002/eqe.2191.
  6. Elkady, A., & Lignos, D. G. (2014). Modeling of the composite action in fully restrained beam-to-column connections: implications in the seismic design and collapse capacity of steel special moment frames, Earthquake Engineering and Structural Dynamics, 43(13), 1935-1954, https://doi.org/10.1002/eqe.2430.
  7. FEMA (2009). Quantification of Building Seismic Performance Factors, FEMA P695; Federal Emergency Management Agency, Washington, DC, USA.
  8. FEMA (2018). Seismic performance assessment of buildings, Volumn 1 - Methodology, FEMA P58; Federal Emergency Management Agency, Washington, DC, USA.
  9. Gupta, A., & Krawinkler, H. (1999). Seismic demands for the performance evaluation of steel moment resisting frame structures, Report No. 132; The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering. Stanford University, Stanford, CA, USA.
  10. Han, S. W., Moon, K. H., & Jung, J. (2014). Cyclic performance of welded unreinforced flange-welded web moment connections. Earthquake Spectra, 30(4), 1663-1681. https://doi.org/10.1193/080212EQS250M
  11. Han, S. W., Kim, T. O., & Baek, S. J. (2018). Seismic performance evaluation of steel ordinary moment frames, Earthquake Spectra, 34(1), 55-76.12. https://doi.org/10.1193/011117eqs010m
  12. Han, S. W., Kim, T. O., Kim, D. H., & Baek, S.-J. (2017). Seismic collapse performance of special moment steel frames with torsional irregularities, Engineering Structures, 141, 482-494.
  13. Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration, Earthquake Engineering and Structural Dynamics, 34(12), 1489-1511, https://doi.org/10.1002/eqe.495.
  14. Kim, T., & Han, S. W. (2021). Seismic collapse performance of steel special moment frames designed using different analysis methods, Earthquake Spectra, 37(2), 988-1012, https://doi.org/10.1177/8755293020970969.
  15. Krishnan, S., & Muto, M. (2012). Mechanism of collapse of tall steel moment-frame buildings under earthquake excitation. Journal of Structural Engineering, 138(11), 1361-1387. https://doi.org/10.1061/(asce)st.1943-541x.0000573
  16. Lignos, D. G., & Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137(11), 1291-1302, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
  17. Lignos, D. G., Hartloper, A. R. Elkady, A., Deierlein, G. G., & Hamburger, R. (2012). Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering, Journal of Structural Engineering, 145(9), 04019083, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
  18. McKenna, F. (2011). OpenSees: a framework for earthquake engineering simulation. Computing in Science and Engineering, 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66
  19. Medina, R. A., & Krawinkler, H. (2002). Seismic demands for nondeteriorating frame structures and their dependence on ground motions, Report No. 144; The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering. Stanford University, Stanford, CA, USA.
  20. MOLIT (2021). Assessment Guideline for Seismic Performance of Existing Buildings. Ministry of Land Infrastructure and Transport, Korea
  21. Moon, K.-H., Han, S. W., Lee, T. S., & Seok, S. W. (2012). Approximate MPA-based method for performing incremental dynamic analysis, Nonlinear Dynamics, 67(4), 2865-2888. https://doi.org/10.1007/s11071-011-0195-z
  22. Newell, J.D. (2008). "Cyclic behavior and design of steel columns subjected to large drift", Ph.D. Dissertation; University of California, Berkeley, CA, USA.
  23. NIST (2010). Evaluation of the FEMA P695 Methodology for Quantification of Building Seismic Performance Factors, NIST GCR 10-917-8; The National Institute of Standards and Technology, Gaithersburg, MD, 2010.
  24. NIST (2017). Recommended Modeling Parameters and Acceptance Criteria for Nonlinear Analysis in Support of Seismic Evaluation, Retrofit, and Design, NIST GCR 17-917-45; The National Institute of Standards and Technology, Gaithersburg, MD, 2017.
  25. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31(3), 491-514.26. https://doi.org/10.1002/eqe.141
  26. Wen, Y. K., Collins, K. R., Han, S. W., & Elwood, K. J. (1996). Dual-level designs of buildings under seismic loads, Structural Safety, 18, 195-224. https://doi.org/10.1016/0167-4730(96)00011-2
  27. Zareian, F., & Medina, R. A. (2010). A practical method for proper modeling of structural damping in inelastic plane structural systems. Computers & structures, 88(1-2), 45-53. https://doi.org/10.1016/j.compstruc.2009.08.001