References
- Abedini, M. and Zhang, CW. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441.
- Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006.
- ASCE Task Committee. (1997), Design of Blast Resistant Buildings in Petrochemical Facilities, ASCE, New York, NY, USA.
- Castedo, R., Segarra, P., Alanon, A., Lopez, L.M., Santos, A.P. and Sanchidrian, J.A. (2015), "Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation", Int. J. Impact Eng., 86, 145-156. https://doi.org/10.1016/j.ijimpeng.2015.08.004.
- Chen, F., Zhong, Y., Gao, X., Jin, Z. and He, X. (2020), "Nonuniform model of relationship between surface strain and rust expansion force of reinforced concrete", Sci. Rep., 11, 8741. https://doi.org/10.1038/s41598-021-88146-2.
- Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P., Gao, X. and He, X. (2021), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Sci. Rep., 11, 4208. https://doi.org/10.1038/s41598-021-83376-w.
- CEB Bulletin No. 213/214, (1993), CEB-FIP MODEL CODE 1990, Thomas Telford Ltd., London, UK.
- Dobrocinski, S. and Flis, L. (2015), "Numerical simulations of blast loads from near-field ground explosions in air", Studia Geotechnica et Mechanica, 37(4), 11-18. https://doi.org/10.1515/sgem-2015-0040.
- Feng, J., Zhou, Y.Z., Wang, P., Wang, B., Zhou, J.N., Chen, H.L., Fan, H.L. and Jin, F.N. (2017), "Experimental research on blastresistance of one-way concrete slabs reinforced by BFRP bars under close-in explosion", Eng. Struct., 150, 550-561. https://doi.org/10.1016/j.engstruct.2017.07.074.
- Han, G.Z., Yan, B. and Yang, Z. (2019), "Damage model test of prestressed T beam under explosion load", IEEE Access, 7, 135340-135351. https://doi.org/10.1109/ACCESS.2019.2940037.
- Hetherington, J. and Smith, P. (1994), Blast and Ballistic Loading of Structures, Crc Press, Boca Raton, Florida, USA.
- Kee, J.H., Park, J.Y. and Seong, J.H. (2019), "Effect of one way reinforced concrete slab characteristics on structural response under blast loading", Adv. Concrete Constr., 8(4), 277-283. http://dx.doi.org/10.12989/acc.2019.8.4.277.
- Kinney, G.F. and Graham, K.J. (1985), Explosive Shocks in Air, Springer, Berlin, Heidelberg, Germany.
- Li, J. and Hao, H. (2011), "A two-step numerical method for efficient analysis of structural response to blast load", Int. J. Protective Struct., 2(1), 103-126. https://doi.org/10.1260/2041-4196.2.1.103.
- Li, Y., Algassem, O. and Aoude, H. (2018a), "Response of high-strength reinforced concrete beams under shock-tube induced blast loading", Constr. Build. Mater., 189, 420-437. https://doi.org/10.1016/j.conbuildmat.2018.09.005.
- Li, Z., Liu, Y., Yan, J.B., Yu, W.L. and Huang, F.L. (2018b), "Experimental investigation of p-section concrete beams under contact explosion and close-in explosion conditions", Def. Technol., 14(5), 190-199. https://doi.org/10.1016/j.dt.2018.07.025.
- Livermore Software Technology Corporation, LS-DYNA Theory Manual. (2006), http://www.lstc.com/pdf/lsdyna_theory_manual_2006.pdf
- Malvar, L.J. and Crawford, J.E. (1998), "Dynamic increase factors for concrete", Report No. 0704-0188; 28th DDESB Seminar, Orlando, FL, USA.
- Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-cfst column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
- Nagy, N., Mohamed, M. and Boot, J. C. (2021), "Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures", Geomech. Eng., 2(1), 1-18. https://doi.org/10.12989/gae.2010.2.1.001.
- Qi, C., Remennikov, A., Pei, L.Z., Yang, S., Yu, Z.H. and Ngo, T.D. (2017), "Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations", Compos. Struct., 180, 161-178. https://doi.org/10.1016/j.compstruct.2017.08.020.
- Qu, Y., Li, X., Kong, X., Zhang, W. and Wang, X. (2016), "Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading", Eng. Struct., 128, 96-110. https://doi.org/10.1016/j.engstruct.2016.09.032.
- RKM FEMA 426, (2003), Reference Manual to Mitigate Potential Terrorist Attacks against Buildings, Federal Emergency Management Agency, USA.
- Shadabfar, M., Huang, H.W., Wang, Y. and Wu, C.L. (2020), "Monte Carlo analysis of the induced cracked zone by single-hole rock explosion", Geomech. Eng., 21(3), 289-300. http://dx.doi.org/10.12989/gae.2020.21.3.289.
- Shi, Y., Hao, H. and Li, Z.X. (2008), "Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads", Int. J. Impact Eng., 35(11), 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001.
- TM 5-855-1. (1986), Fundamentals of Protective Design for Conventional Weapons, Technical Manual, US Department of the Army, Washington DC, USA.
- Wang, W., Liu, R. and Wu, B. (2014), "Analysis of a bridge collapsed by an accidental blast loads", Eng. Fail. Anal., 36, 353-361. https://doi.org/10.1016/j.engfailanal.2013.10.022.
- Wang, Y.G., Hu, S.S. and Wang, L.L. (2003), "Shock attenuation in aluminum foams under explosion loading", Explosion Shock Waves, 23(6), 516-522. http://www.en.cnki.com.cn/Article_en/CJFDTOTALBZCJ200306006.htm https://doi.org/10.3321/j.issn:1001-1455.2003.06.006
- Williams, G.D. and Williamson, E.B. (2012), "Procedure for predicting blast loads acting on bridge columns", J. Bridge Eng., 17(3), 490-499. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000265.
- Wu, C. and Sheikh, H. (2013), "A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding", Int. J. Impact Eng., 55, 24-33. https://doi.org/10.1016/j.ijimpeng.2012.11.006.
- Wu, Y. and Crawford, J.E. (2015), "Numerical modeling of concrete using a partially associative plasticity model", J. Eng. Mech., 141(12), 04015051. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000952.
- Xu, D., Liu, Q., Qin, Y. and Chen, B. (2020), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 147592172097429. https://doi.org/10.1177/1475921720974290.
- Xu, M. and Wille, K. (2014), "Calibration of K&C Concrete Model for UHPC in LS-DYNA", Adv. Mater. Res., 1081, 254-259. https://doi.org/10.4028/www.scientific.net/AMR.1081.254.
- Yan, B., Liu, F., Song, D. and Jiang, Z.G. (2015), "Numerical study on damage mechanism of RC beams under close-in blast loading", Eng. Fail. Anal., 51, 9-19. https://doi.org/10.1016/j.engfailanal.2015.02.007.
- Yao, S.J., Zhang, D., Lu, F.Y., Wang, W. and Chen, X.G. (2016), "Damage features and dynamic response of RC beams under blast", Eng. Fail. Anal., 62, 103-111. https://doi.org/10.1016/j.engfailanal.2015.12.001.
- Zhang, C., Gholipour, G. and Mousavi, A.A. (2019), "Nonlinear dynamic behavior of simply supported RC beams subjected to combined impact-blast loading", Eng. Struct., 181, 124-142. https://doi.org/10.1016/j.engstruct.2018.12.014.
- Zhang, D., Yao, S.J., Lu, F., Chen, X.G., Lin, G.H., Wang, W. and Lin, Y.L. (2013), "Experimental study on scaling of RC beams under close-in blast loading", Eng. Fail. Anal., 33, 497-504. https://doi.org/10.1016/j.engfailanal.2013.06.020.
- Zhang, W., ASCE, M., Tang, Z., Yang, Y. and Wei, J. (2021), "Assessment of FRP-concrete interfacial debonding with coupled mixed-mode cohesive zone model", J. Compos. Constr., 25(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114.