과제정보
This research is funded by Japan International Cooperation Agency Project for ASEAN University Network/Southeast Asia Engineering Education Development Network (JICA Project for AUN/SEED-Net) in the framework of Collaborative Education Program (CEP) under Program Contract No. HCMUT CEP 2101.
참고문헌
- Agarwala, N. and Nair, E.M.S. (2014), "Structural response of a floating runway excited by the taking off of an airplane", J. Naval Architect. Marine Eng., 11, 131-138. https://doi.org/10.3329/jname.v11i2.19167.
- Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018.
- Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002.
- Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Twodimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., 27, 525-536. http://dx.doi.org/10.12989/scs.2018.27.4.525.
- Au, M.C. and Brebbia, C.A. (1982), "Numerical prediction of wave forces using the boundary element method", Appl. Mathem. Modelling, 6, 218-228. https://doi.org/10.1016/S0307-904X(82)80028-0.
- Banh, T.T. and Lee, D. (2018a), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
- Banh, T.T. and Lee, D. (2018b), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27, 27-33 https://doi.org/10.12989/scs.2018.27.1.027.
- Banh, T.T., Luu, N.G., Lieu, Q.X., Lee, J., Kang, J. and Lee, D. (2021), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41, 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
- Banh, T.T., Nguyen, X.Q., Herrmann, M., Filippou, F.C. and Lee, D. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35, 129-145. https://doi.org/10.12989/scs.2020.35.1.129.
- Banh, T.T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struc., 27, 177-184. https://doi.org/10.12989/scs.2018. 27.2.177.
- Cheng, Y., Zhai, G.J. and Ou, J.P. (2014), "Direct time-domain numerical analysis of transient behavior of a VLFS during unsteady external loads in wave condition", 2014, 628564. https://doi.org/10.1155/2014/628564.
- Endo, H. and Yago, K. (1999), "Time history response of a large floating structure subjected to dynamic load", J. Soc. Naval Architect. Japan, 1999, 369-376. https://doi.org/10.2534/jjasnaoe1968.1999.186_369.
- Eyre, D. (1977), "The flexural motions of a floating ice sheet induced by moving vehicles", J. Glaciology, 19, 555-570. https://doi.org/10.3189/S0022143000215475.
- Fleischer, D. and Park, S.K. (2004), "Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle", J. Sound Vib., 273, 585-606. https://doi.org/10.1016/S0022-460X(03)00518-2.
- Hosking, R. and Sneyd, A.D. (1966), "Waves due vehicle on floating ice sheets", In 9th Australasian Fluid Mechanics Conference, AuckLan.
- Hou, Z., Xia, H., Wang, Y., Zhang, Y. and Zhang, T. (2015), "Dynamic analysis and model test on steel-concrete composite beams under moving loads", Steel Compos. Struct., 18, 565-582. http://dx.doi.org/10.12989/scs.2015.18.3.565.
- Ismail, R.E.S. (2016), "Time-domain three-dimensional BE-FE method for transient response of floating structures under unsteady loads", Latin Amer. J. Solids Struct., 13, 1340-1359. https://doi.org/10.1590/1679-78251688.
- Jin, J.Z. and Xing, J.T. (2007), "Transient dynamic analysis of a floating beam-water interaction system excited by the impact of a landing beam", J. Sound Vib., 303, 371-390. https://doi.org/10.1016/j.jsv.2007.01.026.
- Kashiwagi, M. (2004), "Transient responses of a VLFS during landing and take-off of an airplane", J. Marine Sci. Technol., 9, 14-23. https://doi.org/10.1007/s00773-003-0168-0.
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
- Lau, A.K.T. and Hui, D. (2002), "The revolutionary creation of new advanced materials-carbon nanotube composites", Compos. Part B: Eng., 33, 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4.
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003.
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007.
- Lieu, Q.X., Lee, D., Kang, J. and Lee, J. (2018), "NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2018.1430273.
- Lieu, Q.X. and Lee, J. (2019), "An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates", Comput. Meth. Appl. Mech. Eng., 343, 407-437. https://doi.org/10.1016/j.cma.2018.08.017.
- Luong, V.H., Cao, T.N.T., Lieu, Q.X. and Nguyen, X.V. (2020a), "Moving element method for dynamic analyses of functionally graded plates resting on pasternak foundation subjected to moving harmonic load", Int. J. Struct. Stab. Dyn., 20. https://doi.org/10.1142/S0219455420500030.
- Luong, V.H., Nguyen, X.V., Cao, T.N.T., Tran, M.T. and Nguyen, H.P. (2020b), "A timedomain 3D BEM-MEM method for flexural motion analyses of floating kirchhoff plates induced by moving vehicles", Int. J. Struct. Stab. Dyn., 20, 2050041. https://doi.org/10.1142/s0219455420500418.
- Matiushina, A.A., Pogorelova, A.V. and Kozin, V.M. (2016), "Effect of shock pulse load on the ice cover during landing of an airplane", Int. J. Offshore Polar Eng., 26, 6-12. https://doi.org/10.17736/IJOPE.2016.VS08
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. http://dx.doi.org/10.12989/scs.2020.35.6.765.
- Mousavi, S.B. and Yazdi, A.A. (2019), "Aeroelastic behavior of nano-composite beam-plates with double delaminations", Steel Compos. Struct., 33(5), 653-661. http://dx.doi.org/10.12989/scs.2019.33.5.653.
- Nevel, D.E. (1970), "Moving loads on a floating ice sheet", Cold Regions Res. Eng. Lab., 196, 1-16.
- Nguyen, X.V., Luong, V.H., Cao, T.N.T., Lieu, X.Q. and Nguyen, T.B. (2020), "Hydroelastic responses of floating composite plates under moving loads using a hybrid moving elementboundary element method", Adv. Struct. Eng., 23, 2759-2775. https://doi.org/10.1177/1369433220919070.
- Nugroho, W.S., Wang, K., Hosking, R.J. and Milinazzo, F. (1999), "Time-dependent response of a floating flexible plate to an impulsively started steadily moving load", J. Fluid Mech., 381, 337-355. https://doi.org/10.1017/S0022112098003875.
- Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H. and Abdel Wahab, M. (2017), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166, 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049.
- Qiu, L.C. (2009), "Modeling and simulation of transient responses of a flexible beam floating in finite depth water under moving loads", Appl. Mathem. Modelling, 33, 1620-1632. https://doi.org/10.1016/j.apm.2008.02.015.
- Rajabi, J and Mohammadimehr, M. (2019), "Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. http://dx.doi.org/10.12989/scs.2019.33.4.509.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC.
- Reddy, J.N., Nguyen, X.V., Than Cao, T.N., Lieu, Q.X. and Luong, V.H. (2020), "An integrated moving element method (IMEM) for hydroelastic analysis of infinite floating Kirchhoff-Love plates under moving loads in a shallow water environment", Thin-Walled Struct., 155, 106934. http://dx.doi.org/10.1016/j.tws.2020.106934.
- Sahoo, T. (2013), Mathematical techniques for wave interaction with flexible structures. Taylor & Francis.
- Schafer, H.J. and Michael, B. (2006), Fluid-Structure Interaction: Modelling, Simulating, Optimising, Springer, Berlin, Heidelberg
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. http://dx.doi.org/10.1016/j.compstruct.2009.04.026.
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. http://dx.doi.org/10.12989/scs.2011.11.1.059.
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. http://dx.doi.org/10.12989/scs.2016.20.3.623.
- Takizawa, T. (1985), "Deflection of a floating sea ice sheet induced by a moving load", Cold Regions Sci. Technol., 11, 171-180. doi:https://doi.org/10.1016/0165-232X(85) 90015-1.
- Wang, C., Watanabe, E. and Utsunomiya, T. (2008), Very Large Floating Structures, Taylor & Francis.
- Watanabe, E., Utsunomiya, T. and Tanigaki, S. (1998), "A transient response analysis of a very large floating structure by finite element method", Doboku Gakkai Ronbunshu, 1998, 1-9. http://dx.doi.org/10.2208/jscej.1998.598_1.
- Watanabe, E., Utsunomiya, T. and Wang, C.M. (2004), "Hydroelastic analysis of pontoon-type VLFS: A literature survey", Eng. Struct., 26, 245-256. https://doi.org/10.1016/j.engstruct.2003.10.001.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Mathem. Modelling, 30, 67-84. http://doi.org/10.1016/j.apm.2005.03.009.
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotubereinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010