Acknowledgement
The project is supported by National Natural Science Foundation of China (NO. 51908085), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0010), Fundamental Research Funds for the Central Universities (2020CDJ-LHZZ-013), and the Youth Innovation Team of Shaanxi Universities (21JP138) which are gratefully acknowledged.
References
- Demonceau J.F. and Jaspart J.P. (2010), "Experimental test simulating a column loss in a composite frame", Adv. Steel Construct., 6, 891-913. http://hdl.handle.net/2268/30645.
- Department of Defense U.S. (2013), Unified Facilities Criteria: Design of Building to Resist Progressive Collapse, UFC 4-023-03, U.S.A.
- Elghazouli, A.Y., Magala-Chuquitaype, C., Castro J.M. and Orton A.H. (2009), "Experimental monotonic and cyclic behavior of blind-bolted angle connections", Eng. Struct., 31, 2540-2553. https://doi.org/10.1016/j.engstruct.2009.05.021.
- EN 1994-1-1, European Committee for Strandardization - CEN (2005), Eurocode 4: Design of Composite Seel and Concrete Structures. Part 1.1, General rules and rules for buildings, Brussels.
- EN1993-1-8, European Committee for Strandardization - CEN (2005), Eurocode 3: Design of Steel Structures. Part 1.8, Design of Joints, Brussels.
- Faella, C., Piluso, V. and Rizzano G. (1998), "Experimental analysis of bolted connections: snug versus preloaded bolts", J. Struct. Eng., 124, 764-744. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(765).
- Federal Emergency Management Agency (2000), FEMA-350: Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, U.S.A.
- Gao, S., Guo., Fu, F. and Zhang, S.M. (2017), "Capacity of semi-rigid composite joints in accommodating column loss", J. Constra. Steel Res., 139, 288-301. https://doi.org/10.1016/j.jcsr.2017.09.029.
- GB50017-2017 (2017), Code for Design of Steel Structures. Beijing, China.
- GB50936-2014 (2014), Technical Code for Concrete Filled Steel Tubular Structures. Beijing, China.
- General Services Administration U.S. (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Washington D.C.
- Hoang, V.L., Jaspart J.P. and Demonceau J.F. (2015), "Extended end-plate to concrete-filled rectangular column joint using long bolts", J. Construct. Steel Res., 113, 156-168. https://doi.org/10.1016/j.jcsr.2015.06.001.
- Hoffman, S.T. and Fahnestock, L.A. (2011), "Behavior of multi-story steel buildings under dynamic column loss scenarios", Steel Compos. Struct., 11(2), 149-168. https://doi.org/10.12989/scs.2011.11.2.149
- Huang, Z., Jiang, L.Z., Zhou, W.B. and Chen, S. (2016), "Studies on restoring force model of concrete filled steel tubular lace column to composite box-beam connections", Steel Compos. Struct., 22(6), 1217-1238. https://doi.org/10.12989/scs.2016.22.6.1217
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss-Part 1: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
- Khaloo, A. and Omidi, H. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
- Li, W. and Han, L.H. (2011), "Seismic performance of CFST column to steel beam joints with RC slab: Analysis", J. Constrcut. Steel Res., 67(1), 127-139. https://doi.org/10.1016/j.jcsr.2010.07.002.
- Mashhadi, J. and Saffari, H. (2017), "Dynamic increase factor based on residual strength to assess progressive collapse", Steel Compos. Struct., 25(5), 617-624. https://doi.org/10.12989/scs.2017.25.5.617.
- Mirtaheri, M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Sadek, F., Main, J.A., Lew, H.S. and Bao, Y.H. (2011), "Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario", J. Struct. Eng., 9, 881-892. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000422.
- Simoes da Silva, L., Lima, L.R.O., Vellasco, P.C.G. and Andrade S.A.L. (2004), "Behaviour of flush end-plate beam-to-column joints under bending and axial force", Steel Compos. Struct., 4(2). 77-94. https://doi.org/10.12989/scs.2004.4.2.077
- Stylianidis, P.M. and Nethercot, D.A. (2015), "Modelling of connection behaviour for progressive collapse analysis", J. Constr. Steel Res., 113, 169-184. https://doi.org/10.1016/j.jcsr.2015.06.008.
- Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2018.27.6.727.
- Thai, H.T. and Uy, B. (2016), "Rotational stiffness and moment resistance of bolted endplate joints with hollow or CFST columns", J. Constr. Steel Res., 126, 139-152. https://doi.org/10.1016/j.jcsr.2016.07.005.
- Wang, J.F. and Chen, L.P. (2012), "Experimental investigation of extended end plate joints to concrete-filled steel tubular columns", J. Constr. Steel Res., 79, 56-70. https://doi.org/10.1016/j.jcsr.2012.07.016.
- Xu, M., Gao, S., Zhang, S. and Li, H. (2018), "Experimental study on bolted CFST-column joints with different configurations in accommodating column-loss", J. Constr. Steel Res., 151, 122-131. https://doi.org/10.1016/j.jcsr.2018.09.021.
- Yang, B. and Tan, K.H. (2012), "Numeircal analyses of steel beam-column joints subjected to catenary action", J. Constr. Steel Res., 70, 1-11. https://doi.org/10.1016/j.jcsr.2011.10.007.