과제정보
The research presented in this paper was supported by Babol Noshirvani University of Technology (Award No: BNUT934140021). The support is gratefully acknowledged.
참고문헌
- Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Construct. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002.
- Azad, S.K. and Uy, B. (2020), "Effect of concrete infill on local buckling capacity of circular tubes", J. Construct. Steel Res., 165, 105899. https://doi.org/10.1016/j.jcsr.2019.105899.
- Bahrami, A. and Nematzadeh, M. (2021), "Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures", Construct. Build. Mater., 300, 124039. https://doi.org/10.1016/j.conbuildmat.2021.124039
- Chen, L., Dai, J., Jin, Q., Chen, L. and Liu, X. (2015), "Refining bond-slip constitutive relationship between checkered steel tube and concrete", Construct. Build. Mater., 79, 153-164. https://doi.org/10.1016/j.conbuildmat.2014.12.058.
- Chen, Y., Feng, R., Shao, Y. and Zhang, X. (2017), "Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes", J. Construct. Steel Res., 130, 248-263. https://doi.org/10.1016/j.jcsr.2016.12.012.
- Chitawadagi, M.V., Chandrashekhara Mattur, N. and Kulkarni., S. M. (2010), "Axial strength of circular concrete-filled steel tube columns-DOE approach", J. Construct. Steel Res., 66(10), 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006.
- Denavit, M.D. (2012), Characterization of Behavior of Steel-Concrete Composite Members and Frames with Applications for Design. University of Illinois at Urbana-Champaign.
- Denavit, M.D. and Hajjar, J.F. (2014), Characterization of Behavior of Steel-Concrete Composite Members and Frames with Applications for Design, Report No. NSEL-034, Newmark Structural Laboratory Report Series (ISSN 1940-9826), Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, August, 683 U.S.A.
- Dong, H., Chen, X., Cao, W. and Zhao, Y. (2020), "Bond-slip behavior of large high-strength concrete-filled circular steel tubes with different constructions", J. Construct. Steel Res., 167, 105951. https://doi.org/10.1016/j.jcsr.2020.105951.
- ECS. (2004), Eurocode 4: EN 1994-1-2: 2004: Design of Composite Steel and Concrete Structures. Part1-1: General Rules-Structural Rules for Buildings, ECS Brussels, Belgium.
- Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin-Wall. Struct., 80, 46-56. https://doi.org/10.1016/j.tws.2014.02.022.
- Gourley, B.C., Tort, C., Hajjar, J.F. and Schiller, P.H. (2001), A Synopsis of Studies of the Monotonic and Cyclic Behavior of Concrete-Filled Steel Tube Beam-Columns, Structural Engineering Report No. ST-01-4, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, Version 3.0, December, 262. U.S.A.
- Haghinejada, A. and Nematzadeh, M. (2016). "Three-dimensional finite element analysis of compressive behavior of circular steel tube-confined concrete stub columns by new confinement relationships", Latin American Journal of Solids and Structures, 13, 916-944. https://doi.org/10.1590/1679-78252631
- Karimi, A., Nematzadeh, M. and Mohammad-Ebrahimzadeh-Sepasgozar, S. (2020), "Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber", Comput. Concrete, 26(6), 467-482. https://doi.org/10.12989/CAC.2020.26.6.467
- Kilpatrick, A.E. and Rangan, B.V. (1999), "Influence of Interfacial Shear Transfer on Behavior of Concrete-Filled Steel Tubular Columns", Struct. J., 96(4), 642-648.
- Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. http://dx.doi.org/10.12989/sss.2019.23.2.207.
- Memarzadeh, A. and Nematzadeh, M. (2021), "Axial compressive performance of steel reinforced fibrous concrete composite stub columns: Experimental and theoretical study", Structures, 34, 2455-2475. https://doi.org/10.1016/j.istruc.2021.08.130
- Mohammadnejad, M., Naghipour, M., Nematzadeh, M. and Elyasi, M. (2020), "Experimental and analytical investigation of the effect of external pressure on compressive behavior of concrete-filled steel tube stub columns", Appl. Ocean Res., 100, 102152. https://doi.org/10.1016/j.apor.2020.102152
- Mouli, M. and Khelafi, H. (2007), "Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete", Eng. Struct., 29(8), 1791-1797. https://doi.org/10.1016/j.engstruct.2006.10.003.
- Naghipour, M., Yousefi, G. and Shariati, M. (2020), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding line", Steel Compos. Struct., 34(3), 347-359. https://doi.org/10.12989/scs.2020.34.3.347.
- Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M. (2017), "Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement", Steel Compos. Struct., 24(3), 323-337. https://doi.org/10.12989/scs.2017.24.3.323
- Nematzadeh, M., Hosseini, S.A. and Ozbakkaloglu, T. (2021), "The combined effect of crumb rubber aggregates and steel fibers on shear behavior of GFRP bar-reinforced high-strength concrete beams", J. Build. Eng., 44, 102981. https://doi.org/10.1016/j.jobe.2021.102981
- Nematzadeh, M., Karimi, A. and Gholampour, A. (2020), "Pre-and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber", Struct., 27, 2346-2364. https://doi.org/10.1016/j.istruc.2020.07.034
- Parsley, M.A. and Yura, J.A. (2000), Push-Out Behavior of Rectangular Concrete-Filled Steel Tubes. Special Publication, 196, 87-108. https://doi.org/10.14359/9998.
- Petrus, C., Hamid, H.A., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Construct. Steel Res., 66(7), 915-922. https://doi.org/10.1016/j.jcsr.2010.02.006.
- Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M. (2013), "Load-reversed push-out tests on rectangular CFST columns", J. Construct. Steel Res., 81, 35-43. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477).
- Rahmani, Z., Naghipour, M. and Nematzadeh, M. (2021a), "Structural behavior of prestressed self-compacting concrete-encased concrete-filled steel tubes beams", Struct. Concrete, 22(4), 2011-2028. https://doi.org/10.1002/suco.202000184
- Rahmani, Z., Naghipour, M. and Nematzadeh, M. (2021b), "Parametric study on prestressed concrete-encased CFST subjected to bending using nonlinear finite element modeling", Asian J. Civil Eng., 22(3), 529-549. https://doi.org/10.1007/s42107-020-00330-3
- Roeder, C.W, Lehman, D.E. and Thody, R. (2009), "Composite Action in CFT Components and Connections", AISC Eng. J., 47(4), 229-242.
- Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
- Shakir-Khalil, H. (1993), "Resistance of Concrete-Filled Steel Tubes to Pushout Forces", Struct. Eng., 71(13), 234-43.
- Shariati, M., Heirati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N.A. and Poi-Ngian, Sh. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst, 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553.
- Shariati, M., Rafiei, Sh., Mehrabi, P., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariati, A., Trung, N.T., Salih, M.N.A. and Poi-Ngian, Sh. (2019b), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Construct., 8(3), 225-237. https://doi.org/10.12989/acc.2019.8.3.225.
- Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Construct. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.
- Toghroli, A., Shariati, M., Rehan, M. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering, Zurich, Switzerland.
- Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. http://dx.doi.org/10.12989/sss.2018.22.4.433.
- Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. http://dx.doi.org/10.12989/sss.2019.24.3.415.
- Virdi, K.S. and Dowling, P.J. (1980), "Bond strength in concrete filled steel tubes", IABSE Proceeding City Univ., Dep. Civil Eng., London, United Kingdom.
- Xu, C., Chengkui, H., Decheng, J. and Yuancheng, S. (2009), "Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement", Construct. Build. Mater., 23(1), 491-497. https://doi.org/10.1016/j.conbuildmat.2007.10.021.
- Xue, J.Q., Briseghella, B. and Chen, B.C. (2012), "Effects of debonding on circular CFST stub columns", J. Construct. Steel Res., 69(1), 64-76. https://doi.org/10.1016/j.jcsr.2011.08.002.