DOI QR코드

DOI QR Code

On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder

  • 투고 : 2021.01.21
  • 심사 : 2021.06.21
  • 발행 : 2022.01.25

초록

In this work the flow through a hollow porous 5:1 rectangular cylinder made of perforated plates is numerically investigated by means of 2D URANS based simulations. Two approaches are adopted to account for the porous surfaces: in the first one the pores are explicitly modeled, so providing a detailed representation of the flow. In the second one, the porous surfaces are modeled by means of pressure jumps, which allow to take into account the presence of pores without reproducing the flow details. Results obtained by using the two aforementioned techniques are compared aiming at evaluating differences and similarities, as well as identifying the main flow features which might cause discrepancies. Results show that, even in the case of pores remarkably smaller than the immersed body, their arrangement can lead to local mechanisms able to affect the global flow arrangement, so limiting the accuracy of pressure jumps based simulations. Despite that, time-averaged fields often show a reasonable agreement between the two approaches.

키워드

참고문헌

  1. Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J. Wind Eng. Ind. Aerod., 123, 291-299. https://doi.org/10.1016/j.jweia.2013.09.011.
  2. Annand, W. (1953), "The resistance to air flow of wire gauzes", Aeronaut. J., 57(507), 141-146. https://doi.org/10.1017/S036839310013007X.
  3. Azizi, F. (2019), "On the pressure drop of fluids through woven screen meshes", Chemical Eng. Sci., 207, 464-478. https://doi.org/10.1016/j.ces.2019.06.046.
  4. Bailey, B., Montero, J., Parra, J., Robertson, A., Baeza, E. and Kamaruddin, R. (2003), "Airflow resistance of greenhouse ventilators with and without insect screens", Biosyst. Eng., 86(2), 217-229. https://doi.org/10.1016/S1537-5110(03)00115-6.
  5. Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.
  6. Brundrett, E. (1993), "Prediction of pressure drop for incompressible flow through screens", J. Fluids Eng., 115(2), 239-242. https://doi.org/10.1115/1.2910130.
  7. Bruno, L., Salvetti, M. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: an overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
  8. Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.
  9. Eckert, B. and Pfluger, F. (1942), The Resistance Coefficient of Commercial Round Wire Grids. (No. NACA-TM-1003).
  10. Feichtner, A., Mackay, E., Tabor, G., Thies, P., Johanning, L. and Ning, D. (2021), "Using a porous-media approach for CFD modelling of wave interaction with thin perforated structures", J. Ocean Eng. Mar. Energy, 7(1), 1-23. https://doi.org/10.1007/s40722-020-00183-7.
  11. Groth, J. and Johansson, A. (1988), "Turbulence reduction by screens", J. Fluid Mech., 197, 139-155. https://doi.org/10.1017/S0022112088003209.
  12. Hoerner, S. (1958), Fluid-Dynamic Drag. Theoretical, Experimental and Statistical Information.
  13. Huang, L.M., Chan, H.C. and Lee, J.T. (2012), "A numerical study on flow around nonuniform porous fences", J. Appl. Mathem., 2012. https://doi.org/10.1155/2012/268371.
  14. Jesus, M., Lara, J. and Losada, I. (2012), "Three-dimensional interaction of waves and porous coastal structures: Part I: Numerical model formulation", Coastal Eng., 64, 57-72. https://doi.org/10.1016/j.coastaleng.2012.01.008.
  15. Kosutova, K., Hooff, T., Vanderwel, C., Blocken, B. and Hensen, J. (2019), "Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations", Build. Environ., 154, 263-280. https://doi.org/10.1016/j.buildenv.2019.03.019.
  16. Kurian, T. and Fransson, J. (2009), "Grid-generated turbulence revisited", Fluid Dyn. Res., 41(2), 021403. https://doi.org/10.1088/0169-5983/41/2/021403/meta.
  17. Lee, S.J. and Lim, H.C. (2001), "A numerical study on flow around a triangular prism located behind a porous fence", Fluid Dyn. Res., 28(3), 209. https://doi.org/10.1016/S0169-5983(00)00030-7/meta.
  18. Li, Y., Liu, Y. and Teng, B. (2006), "Porous effect parameter of thin permeable plates", Coastal Eng. J., 48(04), 309-336. https://doi.org/10.1142/S0578563406001441.
  19. Mannini, C., Marra, A., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
  20. Mannini, C., Soda, A. and Schewe, G. (2010), "Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comput. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.
  21. Mariotti, A., Salvetti, M., Omrani, P. and Witteveen, J. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
  22. Mariotti, A., Siconolfi, L. and Salvetti, M. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5: 1 rectangular cylinder", Europ. J. Mech. B/Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
  23. Maruyama, T. (2008), "Large eddy simulation of turbulent flow around a windbreak", J. Wind Eng. Ind. Aerod., 96, 1998-2006. https://doi.org/10.1016/j.jweia.2008.02.062.
  24. Menter, F. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598- 1605. https://doi.org/10.2514/3.12149.
  25. Menter, F., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbulence Heat Mass Transfer, 4(1), 625-632.
  26. Ooi, C., Chiu, P.H., Raghavan, V., Wan, S. and Poh, H. (2019), "Porous media representation of louvers in building simulations for natural ventilation", J. Build. Perform. Simulation, 12(4), 494-503. https://doi.org/10.1080/19401493.2018.1510544.
  27. Packwood, A. (2000), "Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments", J. Wind Eng. Ind. Aerod., 88(1), 75-90. https://doi.org/10.1016/S0167-6105(00)00025-8.
  28. Patruno, L., Ricci, M., Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.
  29. Pinker, R. and Herbert, M. (1967), "Pressure loss associated with compressible flow through square-mesh wire gauzes", J. Mech. Eng. Sci., 9(1), 11-23. https://doi.org/10.1243/JMES_JOUR_1967_009_004_02.
  30. Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.
  31. Rethore, P.E. and Sorensen, N.N. (2012), "A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics", Wind Energy, 15(7), 915-926. https://doi.org/10.1002/we.525.
  32. Rethore, P.E., Laan, P., Troldborg, N., Zahle, F. and Sorensen, N.N. (2014), "Verification and validation of an actuator disc model", Wind Energy, 17(6), 919-937. https://doi.org/10.1002/we.1607.
  33. Ricci, M., Patruno, L., Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comput. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
  34. Roach, P. (1987), "The generation of nearly isotropic turbulence by means of grids", Int. J. Heat Fluid Flow, 8(2), 82-92. https://doi.org/10.1016/0142-727X(87)90001-4.
  35. Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5: 1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
  36. Shih, T.H. (1993), A Realizable Reynolds Stress Algebraic Equation Model, Lewis Research Center, Institute for Computational Mechanics in Propulsion.
  37. Sun, D., Owen, J. and Wright, N. (2009), "Application of the k - ω turbulence model for a wind-induced vibration study of 2D bluff bodies", J. Wind Eng. Ind. Aerod., 97(2), 77-87. https://doi.org/10.1016/j.jweia.2008.08.002.
  38. Taylor, G. (1944), "The aerodynamics of porous sheets", Aeronaut. Reseach Council, Reports Memoranda, 2237, 163-176.
  39. Wakeland, R. and Keolian, R. (2003), "Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate Reynolds numbers", J. Fluids Eng., 125(5), 851-862. https://doi.org/10.1115/1.1601254.
  40. Watters, C. and Masson, C. (2007), "Recent advances in modeling of wind turbine wake vortical structure using a differential actuator disk theory", J. Physics: Conference Series. https://doi.org/10.1088/1742-6596/75/1/012037/meta.
  41. Wieghardt, K. (1953), "On the resistance of screens", Aeronaut. Quarter., 4(2), 186-192. https://doi.org/10.1017/S0001925900000871.
  42. Wu, B., Li, S., Li, K. and Zhang, L. (2020), "Numerical and experimental studies on the aerodynamics of a 5: 1 rectangular cylinder at angles of attack", J. Wind Eng. Ind. Aerod., 199, 104097. https://doi.org/10.1016/j.jweia.2020.104097.
  43. Xu, M., Patruno, L., Lo, Y.L. and Miranda, S. (2020), "On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step", J. Wind Eng. Ind. Aerod., 207, 104377. https://doi.org/10.1016/j.jweia.2020.104377.