과제정보
We acknowledge the european research infrastructure PRACE that, under the project SEPREA (High-order accurate direct numerical simulations of SEParating and REAttaching flow), has provided access to the Joliot-Curie high-performance computing resources at GENCI@CEA (France) used for the Direct Numerical Simulation reported in the present work. Furthermore, we acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support (ISCRAC ASU-ITIS), Matteo Franciolini for the data of set-up #5 and Pierangelo Conti who provided the grids G1 and G3.
참고문헌
- Alhawwary, M. and Wang, Z.J. (2018), "Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws", J. Comput. Phys., 373, 835-862. https://doi.org/10.1016/j.jcp.2018.07.018 .
- Bando, K., Naddei, F., de la Llave Plata, M. and Ihme, M. (2018), "Variational multiscale SGS modeling for LES using a highorder discontinuous Galerkin method", In 2018 Annual Research, Center for Turbulence Research, Stanford, 299-312. https://hal.archives-ouvertes.fr/hal-02491834
- Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S. and Savini, M. (1997), "A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows", In: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium), 99-108.
- Bassi, F., Crivellini, A., Di Pietro, D.A. and Rebay, S. (2006), "An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations", J. Comput. Phys., 218, 794-815. https://doi.org/10.1016/j.jcp.2006.03.006.
- Bassi, F., Botti. L., Colombo, A., Di Pietro, D.A. and Tesini, P. (2012), "On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations", J. Comput. Phys., 231, 45-65. https://doi.org/10.1016/j.jcp.2011.08.018.
- Bassi, F., Botti, L., Colombo, A., Ghidoni, A. and Massa, F. (2015), "Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows", Comput. Fluids, 118, 305-320. https://doi.org/10.1016/j.compfluid.2015.06.007.
- Bassi, F., Botti, L., Colombo, A., Crivellini, A., Franciolini, M., Ghidoni, A., Noventa, G. (2020), "A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of incompressible transitional flows", Flow, Turbulence Combustion, 105, 437-470. https://doi.org/10.1007/s10494-020-00178-2.
- Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98, 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
- Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
- Carton de Wiart, C. and Hillewaert, K. (2012), "DNS and ILES of transitional flows around a SD7003 using a high order Discontinuous Galerkin Method", In: Seventh International Conference on Computational Fluid Dynamics (Big Island, Hawaii), 1-14. http://hdl.handle.net/2268/262495.
- Carton de Wiart, C., Hillewaert, K., Bricteux, L. and Winckelmans, G. (2015), "Implicit LES of free and wallbounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method", Int. J. Numer. Meth. Fluids, 78, 335-354. https://doi.org/10.1002/fld.4021.
- Chiarini, A. and Quadrio, M. (2021), "The turbulent flow over the BARC rectangular cylinder: A DNS study", Flow, Turbulence Combustion. https://doi.org/10.1007/s10494-021-00254-1.
- Cimarelli, A., Leonforte, A. and Angeli, D. (2018), "On the structure of the self-sustaining cycle in separating and reattaching flows", J. Fluid Mech., 857, 907-936. https://doi.org/10.1017/jfm.2018.772.
- Cimarelli, A., Leonforte, A. De Angelis, E., Crivellini, A. and Angeli, D. (2019a), "On negative turbulence production phenomena in the shear layer of separating and reattaching flows", Phys. Lett. A, 383, 1019-1026. https://doi.org/10.1016/j.physleta.2018.12.026.
- Cimarelli, A., Leonforte, A. De Angelis, E., Crivellini, A. and Angeli D. (2019b), "Resolved dynamics and subgrid stresses in separating and reattaching flows", Phys. Fluids, 31, 095101. https://doi.org/10.1063/1.5110036.
- Cimarelli, A., Franciolini, M. and Crivellini, A. (2020), "Numerical experiments in separating and reattaching flows", Phys. Fluids, 32, 095119. https://doi.org/10.1063/5.0019049.
- Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottesand, J. and Kerkemeier, S. (2008), "NEK5000: Open source spectral element CFD solver", https://nek5000.mcs.anl.gov/index.php/MainPage.
- Franciolini, M., Crivellini, A. and Nigro, A. (2017), "On the efficiency of a matrix-free linearly implicit time integration strategy for high-order Discontinuous Galerkin solutions of incompressible turbulent flows", Comput. Fluids, 159, 276294. https://doi.org/10.1016/j.compfluid.2017.10.008.
- Franciolini, M., Botti, L., Colombo, A. and Crivellini, A. (2020), "p-multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows", Comput. Fluids, 206, 104558. https://doi.org/10.1016/j.compfluid.2020.104558.
- Gassner, G. and Kopriva, D.A. (2011), "A comparison of the dispersion and dissipation errors of Gauss and GaussLobatto discontinuous Galerkin spectral element methods", SIAM J. Sci. Comput., 33(5), 2560-2579. https://doi.org/10.1137/100807211.
- Hesthaven, J. and Warburton, T. (2008), "Nodal discontinuous Galerkin Methods; algorithms, analysis and applications", Texts in Applied Mathematics, 54.
- Hughes, T.J.R., Feijo, G.R., Mazzei, L. and Quincy, J.B. (1998), "The variational multiscale method - a paradigm for computational mechanics", Comput. Meth. Appl. Mech. Eng., 166(1), 3-24. https://doi.org/10.1016/S0045-7825(98)00079-6.
- Lang, J. and Verwer, J. (2001), "ROS3PAn accurate third-order Rosenbrock solver designed for parabolic problems", BIT Numer. Mathem., 41(4), 731-738. https://doi.org/10.1023/A:1021900219772
- Liu, X., Cui, Y. and Liu, Q. (2013), "Wind tunnel study on spanwise correlation of aerodynamic forces on a 5: 1 rectangular cylinder", In: Eighth Asia-Pacific Conference on Wind Engineering (Chennai, India), 211-217. https://doi.org/10.3850/978-981-07-8012-8_289.
- Lodato, G. and Chapelier, J.B. (2018), "Evaluation of the spectral element dynamic model for large-eddy simulation on unstructured, deformed meshes", Flow, Turbulence Combustion, 101, 271-294. https://doi.org/10.1007/s10494-018-9935-1.
- Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
- Manzanero, J., Ferrer, E., Rubio, G. and Valero E. (2018), "Dispersion-dissipation analysis for advection problems with nonconstant coefficients: Applications to discontinuous Galerkin formulations", SIAM J. Sci. Comput., 40(2), A747-A768. https://doi.org/10.1137/16M1101143.
- Mariotti, A., Salvetti, M.V., Omrani, P.S. and Witteveen, J.A.S (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
- Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5: 1 rectangular cylinder", Europ. J. Mech.-B/Fluids, 68, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
- Massa, F.C., Noventa, G., Lorini, M., Bassi, F., Ghidoni, A. (2018), "High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible NavierStokes equations", Comput. Fluids, 162, 55-71. https://doi.org/10.1016/j.compfluid.2017.12.003.
- Mengaldo, G., Mourab, R.C, Giralda B., Peir, J. and Sherwin S.J. (2018), "Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES", Computers and Fluids, 169, 349364. https://doi.org/10.1016/j.compfluid.2017.09.016
- Noventa, G., Massa, F., Rebay, S., Bassi, F., Ghidoni, A. (2020), "Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows", Comput. Fluids, 204, 104529. https://doi.org/10.1016/j.compfluid.2020.104529.
- Ribeiro, A.F.P. (2011), "Unsteady RANS modeling of flow past a rectangular 5: 1 cylinder: Investigation of edge sharpness effects", In: Proceedings of the 13th International Conference on Wind Engineering (Amsterdam, The Netherlands).
- Ricci, M., Patruno, L., de Miranda, S. and Ubertini F. (2017), "Flow field around a 5: 1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comput. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
- Yoshizawa, A. (1986), "Statistical theory for compressible turbulent shear flows, with the application to sub-grid modeling", Phys. Fluids, 29(7), 2152-2164. https://doi.org/10.1063/1.865552.
- Zhang, Z. and Xu, F. (2020), "Spanwise length and mesh resolution effects on simulated flow around a 5: 1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 202, 104186. https://doi.org/10.1016/j.jweia.2020.104186.