과제정보
TUM would like to thank the Deutscher Akademischer Austausch Dienst for funding. ICL would like to acknowledge the financial support of EPSRC and Airbus to UQLab.
참고문헌
- Ahlfeld, R., Belkouchi, B. and Montomoli, F. (2016), "SAMBA: sparse approximation of moment-based arbitrary polynomial chaos", J. Comput. Phys., 320(1), 1-16. https://doi.org/10.1016/j.jcp.2016.05.014.
- Bronkhorst, A.J., Geurts. C.P.W. and van Bentum, C.A. (2011), "Unsteady pressure measurements on a 5:1 rectangular cylinder", In "13th International Conference on Wind Engineering.
- Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
- Codina, R., Principe, J., Guasch, O. and Badia, S. (2007), "Time dependent subscales in the stabilized finite element approximation of incompressible flow problems", Comput. Meth. Appl. Mech. Eng., 196(21-24), 2413-2430. https://doi.org/10.1016/j.cma.2007.01.002.
- Dalmau, J.C., de Navarra, E.O.I. and Rossi, R. (2016), Applications of Turbulence Modeling in Civil Engineering, Ph.D. Dissertation, UPC, Departament de Resistencia de Materials i Estructures a l'Enginyeria.
- Dubreuil, S., Berveiller, M., Petitjean, F. and Salaun, M. (2014), "Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion", Reliab. Eng. Syst. Safety, 121, 263-275. https://doi.org/10.1016/j.ress.2013.09.011.
- Eldred, M.S., Ng, L.W.T., Barone, M.F. and Domino, S.P. (2015), Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models, Springer International Publishing.
- Ferrandiz, V.M., Bucher, P., Rossi, R., Zorrilla, R., Cotela, J., Maria, J., Celigueta, M.A. and Casas, G. (2020), "KratosMultiphysics", https://zenodo.org/record/3234644.
- Ghanem, R. (2017), Handbook of Uncertainty Quantification, Springer, Berlin Heidelberg.
- Golub, G.H. and Welsch, J.H. (1969), "Calculation of Gauss quadrature rules", Mathem. Comput., 23(106), 221-230. https://doi.org/10.1090/S0025-5718-69-99647-1.
- Hughes, T.J. (1995), "Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods", 127(1-4), 387-401. https://doi.org/10.1016/0045-7825(95)00844-9.
- Iaccarino, G., Ooi, A., Durbin, P. and Behnia, M. (2003), "Reynolds averaged simulation of unsteady separated flow", Int. J. Heat Fluid Flow, 24(2), 147-156. https://doi.org/10.1016/S0142-727X(02)00210-2.
- Kuzmin, D., Lohner, R. and Turek, S. (2012), "Flux-corrected transport: principles, algorithms, and applications", Springer Science & Business Media.
- Le Maitre, O.P. and Knio, O.M. (2010), Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Scientific Computation, Springer.
- Loeven, A. and Bijl, H. (2009), "An efficient framework for uncertainty quantification in CFD using Probabilistic Collocation", In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA.
- Mariotti, A., Salvetti, M., Shoeibi Omrani, P. and Witteveen, J. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comput. Fluids, 136(10), 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
- Mariotti, A., Siconolfi, L. and Salvetti, M. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5:1 rectangular cylinder", Europ. J. Mech. B/Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008
- Ouvrard, H., Koobus, B., Dervieux, A. and Salvetti, M.V. (2010), "Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids", Comput. Fluids, 39(7), 1083-1094. https://doi.org/10.1016/j.compfluid.2010.01.017.
- Peherstorfer, B., Willcox, K. and Gunzburger, M. (2018), "Survey of multifidelity methods in uncertainty propagation, inference, and optimization", SIAM Rev. 60(3), 550-591. https://doi.org/10.1137/16M1082469.
- Pepper, N., Montomoli, F. and Sharma, S. (2021), "Data fusion for uncertainty quantification with non-Intrusive polynomial chaos", Comput. Meth. Appl. Mech. Eng., 374, 113577. https://doi.org/10.1016/j.cma.2020.113577.
- Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5:1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
- Rutishauser, H. (1963), "On a modification of the QD-algorithm with Graeffe-type convergence", In "Proc. IFIP Congress, 62, 93-96.
- Schewe, G. (2013), "Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5", J. Fluids Struct., 39, 15-26. https://doi.org/10.1016/j.jfluidstructs.2013.02.013.
- Stewart, M.G. and Deng, X. (2015), "Climate impact risks and climate adaptation engineering for built infrastructure", ASCEASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 1(1), 04014001. https://doi.org/10.1061/AJRUA6.0000809.
- Sudret, B. (2008), "Global sensitivity analysis using polynomial chaos expansions", Reliab. Eng. Syst. Safety, 93(7), 964-979. https://doi.org/10.1016/j.ress.2007.04.002.
- Witteveen, J., Omrani, P., Mariotti, A., Salvetti, M., Bruno, L. and Coste, N. (2014), "Uncertainty quantification of the aerodynamics of a rectangular 5:1 cylinder".
- Wood, W., Bossak, M. and Zienkiewicz, O. (1980), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15(10), 1562-1566. https://doi.org/10.1002/nme.1620151011
- Wornom, S., Ouvrard, H., Salvetti, M.V., Koobus, B. and Dervieux, A. (2011), "Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects", Comput. Fluids, 47(1), 44-50. https://doi.org/10.1016/j.compfluid.2011.02.011.
- Xiu, D. and Karniadakis, G.E. (2002), "The Wiener--Askey polynomial chaos for stochastic differential equations", SIAM Journal Sci. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826