DOI QR코드

DOI QR Code

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season

동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격

  • Kim, Hye Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Jeong, Hyeon Woo (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Hee Sung (Division of Crop Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University)
  • 김혜민 (경상국립대학교 대학원 응용생명과학부) ;
  • 정현우 (경상국립대학교 대학원 응용생명과학부) ;
  • 황희성 (경상국립대학교 대학원 작물생산과학부) ;
  • 황승재 (경상국립대학교 농업생명과학대학 원예학과)
  • Received : 2021.09.16
  • Accepted : 2021.12.09
  • Published : 2022.01.31

Abstract

This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.

본 연구는 동절기 공정육묘장의 수박 플러그 묘 생산 시, 난방 에너지 절감에 유리한 난방장치인 나노탄소섬유 적외선 난방등의 효율적인 사용을 위한 적정 전력과 설치 간격을 구명하기 위해 수행되었다. 유리온실 내 소형 베드 6개를 플라스틱 필름으로 구획을 나누었으며, 100cm 높이에 700W와 900W 난방등을 설치하였다. 난방등은 설치 간격을 각각 중앙 1개(Control), 60cm 간격(2개), 40cm 간격(3개)으로 설치하였다. 나노탄소섬유 적외선 난방등을 점등한 후 대조구를 제외한 모든 처리에서 설정한 야간 기온(20℃)을 유지하였다. 엽온은 난방등 설치 간격이 좁을수록 빨리 상승하는 경향을 보였다. 나노탄소섬유 적외선 난방등을 사용함에 따른 처리구간 수박 접목묘의 생육에는 뚜렷한 차이가 없었으나, 엽장과 엽폭은 700W 난방등에서 설치 간격이 짧을수록 길어지는 경향을 보였으며, 700W 난방등을 40cm 간격으로 설치하였을 때 묘의 충실도가 높은 값을 나타내는 것을 확인할 수 있었다. 따라서 야간 기온 유지와 묘의 충실도를 고려하였을 때, 700W 난방등을 40cm 간격으로 설치하는 것이 수박 접목묘를 생산하는데 경제성을 고려하여 효율적인 나노탄소섬유 적외선 난방등의 전력과 설치 간격으로 판단된다.

Keywords

References

  1. Agricultural Area Survey, Korean statistical information service (KOSIS). https://kosis.kr/. Accessed 17 August 2021 (in Korean)
  2. An J.U., C.G. An, Y.H. Hwang, H.S. Yoon, Y.H. Chang, G.M. Shon, and B.R. Jeong 2013, Effect of heating by infrared heating lamps on growth of strawberry and heating cost. Protected Hort Plant Fac 22:355-360. (in Korean) doi:10.12791/KSBEC.2013.22.4.355
  3. Jeong B.R., S.J. Hwang, and N.J. Kang 2016, The plug seedling, Ed 1, In Gyeongsang National University, Jinju, Korea, pp 11-22. (in Korean)
  4. Jeong K.J., J.G. Yun, Y.S. Chon, H.S. Shin, and S.W. Lee 2018, Effect of supplementary or heating lamps on the yield, vase life, and leaf color of cut rose. Protected Hort Plant Fac 27:158-165. (in Korean) doi:10.12791/KSBEC.2018.27.2.158
  5. Jim R. 2011, Greenhouse heating. In: Beytes C, ed, Ball redbook, Ball publishing, Illinois, USA, pp 116.
  6. Kim D.O., and C.S. Choi 2008, Cause analysis ignited at a far infrared radiation heater. J of Korean Institute of Fire Sci & Eng 22:91-96. (in Korean)
  7. Kim H.M., Y.J. Kim, and S.J. Hwang 2016, Optimum wattage and installation height of nano-carbon fiber infrared heating lamp for heating energy saving in plug seedling production greenhouse in winter season. Protected Hort Plant Fac 25:302-307. (in Korean) doi:10.12791/KSBEC.2016.25.4.302
  8. Lim M.Y., C.H. Ko, M.S. Son, S.B. Lee, G.J. Kim, B.S. Kim, Y.B. Kim, and B.R. Jeong 2009, Effect of heating by nanocarbon fiber infrared lamps on growth and vase life of cut roses and heating cost. J Bio-Env Con 18:1-8. (in Korean)
  9. Rearden J. 2011, Greenhouse Heating, In: Beytes C, ed, Ball redbook, Ball publishing, Illinois, USA, pp 114-122.
  10. Rural Development Administration (RDA) 2001, High quality watermelon cultivation. Sammi design, Suwon, Korea, pp 45-96. (in Korean)
  11. Seasonal analysis of national temperature, Korea meteorological administration (KMA). https://data.kma.go.kr/. Accessed 17 August 2021 (in Korean)
  12. Sonsteby A., K.A. Solhaug, and O.M. Heide 2016, Functional growth analysis of 'Sonata' strawberry plants grown under controlled temperature and day length conditions. Sci Hortic 211:26-33. doi:10.1016/j.scienta.2016.08.003
  13. Watermelon farm work schedule, Rural Development Administration (RDA). http://www.nongsaro.go.kr. Accessed 17 August 2021 (in Korean)