참고문헌
- Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Bas. Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2020.1769651.
- Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
- An, Y., Han, J., Zhang, X., Han, W., Cheng, Y., Hu, P. and Zhao, G. (2016), "Bioinspired high toughness graphene/ZrB2 hybrid composites with hierarchical architectures spanning several length scales", Carbon, 107, 209-216. https://doi.org/10.1016/j.carbon.2016.05.074.
- Arefi, M., Bidgoli, E.M. and Rabczuk, T. (2019), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech. A-Solid., 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.
- Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1. http://doi.org/10.12989/aas.2019.6.1.001.
- Belmonte, M., Nistal, A., Boutbien, P., Roman-Manso, B., Osendi, M.I. and Miranzo, P. (2016), "Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers", Scripta Mater., 113, 127-130. https://doi.org/10.1016/j.scriptamat.2015.10.023.
- Carrera, E., de Miguel, A.G. and Pagani, A. (2017), "Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures", Int. J. Numer. Meth. Eng., 112(13), 1889-1908. https://doi.org/10.1002/nme.5588.
- Carrera, E., Pagani, A., Petrolo, M. and Zappino, E. (2015), "Recent developments on refined theories for beams with applications", Mech. Eng. Rev., 2(2), 14-00298. https://doi.org/10.1299/mer.14-00298.
- Compton, O.C. and Nguyen, S.T. (2010), "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6(6), 711-723. https://doi.org/10.1002/smll.200901934.
- Dastjerdi, S., Akgoz, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes" Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
- Devarajan, B. and Kapania, R.K. (2020), "Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis", Compos. Struct., 238, 111881. https://doi.org/10.1016/j.compstruct.2020.111881.
- Devarajan, B. and Kapania, R.K. (2022), "Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method", Aerosp. Sci. Technol., 107350. https://doi.org/10.1016/j.ast.2022.107350.
- Dindarloo, M.H. and Zenkour, A.M. (2020), "Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment", Eur. Phys. J. Plus, 135(10), 1-18. https://doi.org/10.1140/epjp/s13360-020-00796-9.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B, 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
- Farzam, A. and Hassani, B. (2018), "Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach", Compos. Struct., 206, 774-790. https://doi.org/10.1016/j.compstruct.2018.08.030.
- Farzam, A. and Hassani, B. (2019a), "Size-dependent analysis of FG microplates with temperature-dependent material properties using modified strain gradient theory and isogeometric approach", Compos. Part B, 161, 150-168. https://doi.org/10.1016/j.compositesb.2018.10.028.
- Farzam, A. and Hassani, B. (2019b), "Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory", Aerosp. Sci. Technol., 91, 508-524. https://doi.org/10.1016/j.ast.2019.05.012.
- Farzam, A. and Hassani, B. (2019c), "A new efficient shear deformation theory for FG plates with in-plane and through-thickness stiffness variations using isogeometric approach", Mech. Adv. Mater. Struct., 26(6), 512-525. https://doi.org/10.1080/15376494.2017.1400623.
- Farzam, A. and Kapania, R. (2022), "Buckling analysis of functionally graded plates using Isogeometric Finite Element Method and ABAQUS", AIAA SCITECH 2022 Forum, San Diego. https://doi.org/10.2514/6.2022-1488.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-86. http://doi.org/10.12989/aas.2020.7.2.169.
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solid., 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
- Fornes, T.D. and Paul, D.R. (2003), "Modeling properties of nylon 6/clay nanocomposites using composite theories", Polym., 44(17), 4993-5013. https://doi.org/10.1016/S0032-3861(03)00471-3.
- Garcia-Macias, E., Rodriguez-Tembleque, L. and Saez, A. (2018), "Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates", Compos. Struct., 186, 123-138. https://doi.org/10.1016/j.compstruct.2017.11.076.
- Gomez-Navarro, C., Burghard, M. and Kern, K. (2008), "Elastic properties of chemically derived single graphene sheets", Nano Lett., 8(7), 2045-2049. https://doi.org/10.1021/nl801384y.
- Gong, L.X., Pei, Y.B., Han, Q.Y., Zhao, L., Wu, L.B., Jiang, J.X. and Tang, L.C. (2016), "Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites", Compos. Sci. Technol., 134, 144-152. https://doi.org/10.1016/j.compscitech.2016.08.014.
- Hanzel, O., Sedlak, R., Sedlacek, J., Bizovska, V., Bystricky, R., Girman, V., Kovalcikova, A., Dusza, J. and Sajgalik, P. (2017), "Anisotropy of functional properties of SiC composites with GNPs, GO and in-situ formed graphene", J. Eur. Ceram. Soc., 37(12), 3731-3739. https://doi.org/10.1016/j.jeurceramsoc.2017.03.060.
- Hosseini, S.A., Moghaddam, M.H. and Rahmani, O. (2020)," Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam", Adv. Aircraft Spacecraft Sci., 7(6), 517-36. http://doi.org/10.12989/aas.2020.7.6.517.
- Huang, Y., Jiang, D., Zhang, X., Liao, Z. and Huang, Z. (2018), "Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering", J. Eur. Ceram. Soc., 38(13), 4329-4337. https://doi.org/10.1016/j.jeurceramsoc.2018.05.033.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Iqbal, M.Z., Abdala, A.A., Mittal, V., Seifert, S., Herring, A.M. and Liberatore, M.W. (2016), "Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure", Polym., 98, 143-155. https://doi.org/10.1016/j.polymer.2016.06.021.
- Ji, W.F., Chang, K.C., Lai, M.C., Li, C.W., Hsu, S.C., Chuang, T.L., Yeh, J.M. and Liu, W.R. (2014), "Preparation and comparison of the physical properties of PMMA/thermally reduced graphene oxides composites with different carboxylic group content of thermally reduced graphene oxides", Compos. Part A, 65, 108-114. https://doi.org/10.1016/j.compositesa.2014.05.017.
- Kapoor, H. and Kapania, R.K. (2012), "Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates", Compos. Struct., 94(12), 3434-3447. https://doi.org/10.1016/j.compstruct.2012.04.028.
- Kapoor, H., Kapania, R.K. and Soni, S.R. (2013), "Interlaminar stress calculation in composite and sandwich plates in NURBS Isogeometric Finite Element Analysis", Compos. Struct., 106, 537-548. https://doi.org/10.1016/j.compstruct.2013.05.028.
- Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
- Kashyap, S., Pratihar, S.K. and Behera, S.K. (2016), "Strong and ductile graphene oxide reinforced PVA nanocomposites", J. Alloy Compound., 684, 254-260. https://doi.org/10.1016/j.jallcom.2016.05.162.
- Kiani, Y. (2018), "Isogeometric large amplitude free vibration of grapheme reinforced laminated plates in thermal environment using NURBS formulation", Comput. Meth. Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015.
- Kiani, Y. (2018), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates", Thin Wall Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024.
- Kim, T.A., Pyo, J.B., Lee, S.S. and Park, M. (2019), "Highly aligned and porous reduced graphene oxide structures and their application for stretchable conductors", J. Ind. Eng. Chem., 80, 385-391. https://doi.org/10.1016/j.jiec.2019.08.018.
- Kong, J.Y., Choi, M.C., Kim, G.Y., Park, J.J., Selvaraj, M., Han, M. and Ha, C.S. (2012), "Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker", Eur. Polym. J., 48(8), 1394-1405. https://doi.org/10.1016/j.eurpolymj.2012.05.015.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lee, B., Koo, M.Y., Jin, S.H., Kim, K.T. and Hong, S.H. (2014), "Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process", Carbon, 78, 212-219. https://doi.org/10.1016/j.carbon.2014.06.074.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Li, Y., Tang, J., Huang, L., Wang, Y., Liu, J., Ge, X., Tjong, S.C., Li, R.K. and Belfiore, L.A. (2015a), "Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly (sodium 4-styrenesulfonate)", Compos. Part A, 68, 1-9. https://doi.org/10.1016/j.compositesa.2014.09.016.
- Li, Z., Fan, G., Tan, Z., Guo, Q., Xiong, D., Su, Y., Li, Z. and Zhang, D. (2014), "Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites", Nanotechnol., 25(32), 325601. https://doi.org/10.1088/0957-4484/25/32/325601.
- Li, Z., Guo, Q., Li, Z., Fan, G., Xiong, D.B., Su, Y., Zhang, J. and Zhang, D. (2015b), "Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure", Nano Lett., 15(12), 8077-8083. https://doi.org/10.1021/acs.nanolett.5b03492.
- Liu, J., Khan, U., Coleman, J., Fernandez, B., Rodriguez, P., Naher, S. and Brabazon, D. (2016), "Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics", Mater. Des., 94, 87-94. https://doi.org/10.1016/j.matdes.2016.01.031.
- Maity, N., Mandal, A. and Nandi, A.K. (2016), "Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly (vinylidene fluoride) matrix yielding superior mechanical and electronic properties", Polym., 88, 79-93. https://doi.org/10.1016/j.polymer.2016.02.028.
- Miglani, J., Devarajan, B. and Kapania, R.K., (2021), "Isogeometric thermal buckling and sensitivity analysis of periodically supported laminated composite beams", AIAA J., 1-10. https://doi.org/10.2514/1.J060814.
- Mishra, S.K., Tripathi, S.N., Choudhary, V. and Gupta, B.D. (2014), "SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization", Sensor Actuat. B, 199, 190-200. https://doi.org/10.1016/j.snb.2014.03.109.
- Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A.M.J. and Nguyen-Xuan, H. (2019), "An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets", Compos. Struct., 214, 227-245. https://doi.org/10.1016/j.compstruct.2019.01.077.
- Olowojoba, G.B., Eslava, S., Gutierrez, E.S., Kinloch, A.J., Mattevi, C., Rocha, V.G. and Taylor, A.C. (2016), "In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties", Appl. Nanosci., 6(7), 1015-1022. https://doi.org/10.1007/s13204-016-0518-y.
- Pham, V.H., Dang, T.T., Hur, S.H., Kim, E.J. and Chung, J.S. (2012), "Highly conductive poly (methyl methacrylate)(PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction", ACS Appl. Mater. Int., 4(5), 2630-2636. https://doi.org/10.1021/am300297j.
- Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel Wahab, M. (2017), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B, 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012.
- Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B, 164, 215-255. https://doi.org/10.1016/j.compositesb.2018.11.036.
- Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
- Potts, J.R., Lee, S.H., Alam, T.M., An, J., Stoller, M.D., Piner, R.D. and Ruoff, R.S. (2011), "Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization", Carbon, 49(8), 2615-2623. https://doi.org/10.1016/j.carbon.2011.02.023.
- Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of Porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041.
- Qureshi, T.S. and Panesar, D.K. (2019), "Impact of graphene oxide and highly reduced graphene oxide on cement based composites", Constr. Build. Mater., 206, 71-83. https://doi.org/10.1016/j.conbuildmat.2019.01.176.
- Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2010), "Fracture and fatigue in graphene nanocomposites", Small, 6, 179-183. https://doi.org/10.1002/smll.200901480.
- Ramirez, C., Miranzo, P., Belmonte, M., Osendi, M.I., Poza, P., Vega-Diaz, S.M. and Terrones, M. (2014), "Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets", J. Eur. Ceram. Soc., 34(2), 161-169. https://doi.org/10.1016/j.jeurceramsoc.2013.08.039.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Robinson, J.T., Zalalutdinov, M., Baldwin, J.W., Snow, E.S., Wei, Z., Sheehan, P. and Houston, B.H. (2008), "Wafer-scale reduced graphene oxide films for nanomechanical devices", Nano Lett., 8(10), 3441-3445. https://doi.org/10.1021/nl8023092.
- Saeedi, A., Hassani, B. and Farzam, A. (2020), "Simultaneous modeling and structural analysis of curvilinearly stiffened plates using an isogeometric approach", Acta Mechanica, 231(8), 3473-3498. https://doi.org/10.1007/s00707-020-02725-4.
- Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.
- Sandhya, P.K., Sreekala, M.S., Padmanabhan, M., Jesitha, K. and Thomas, S. (2019), "Effect of starch reduced graphene oxide on thermal and mechanical properties of phenol formaldehyde resin nanocomposites", Compos. Part B, 167, 83-92. https://doi.org/10.1016/j.compositesb.2018.12.009.
- She, X., He, C., Peng, Z. and Kong, L. (2014), "Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement", Polym., 55(26), 6803-6810. https://doi.org/10.1016/j.polymer.2014.10.054.
- Shin, J.H. and Hong, S.H. (2014), "Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics", J. Eur. Ceram. Soc., 34(5), 1297-1302. https://doi.org/10.1016/j.jeurceramsoc.2013.11.034.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Sobhy, M. and Zenkour, A.M. (2020), "The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations", Mech. Adv. Mater. Struct., 27(7), 525-538. https://doi.org/10.1080/15376494.2018.1482579.
- Sobhy, M. and Zenkour, A.M., (2021), "Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory", Wav. Rand. Complex Media, 31(5), 921-941. https://doi.org/10.1080/17455030.2019.1634853.
- Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043.
- Starkova, O., Chandrasekaran, S., Prado, L.A., Tolle, F., Mulhaupt, R. and Schulte, K. (2013), "Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites", Polym. Degrad. Stabil., 98(2), 519-526. https://doi.org/10.1016/j.polymdegradstab.2012.12.005.
- Suk, J.W., Piner, R.D., An, J. and Ruoff, R.S. (2010), "Mechanical properties of monolayer graphene oxide", ACS Nano, 4(11), 6557-6564. https://doi.org/10.1021/nn101781v.
- Thai, C.H., Ferreira, A.J., Tran, T.D. and Phung-Van, P. (2019b), "A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory", Compos. Struct., 234, 111695. https://doi.org/10.1016/j.compstruct.2019.111695.
- Thai, C.H., Ferreira, A.J.M. and Phung-Van, P. (2019a), "Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory", Compos. Part B, 169, 174-188. https://doi.org/10.1016/j.compositesb.2019.02.048.
- Thai, C.H., Ferreira, A.J.M., Rabczuk, T. and Nguyen-Xuan, H. (2017), "A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis", Eng. Anal. Bound. Elem., 160, 689-705. https://doi.org/10.1016/j.enganabound.2017.10.018.
- Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019c), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.
- Thai, H.T. and Kim, S.E. (2013), "A size-dependent functionally graded Reddy plate model based on a modified couple stress theory", Compos. Part B, 45, 1636-1645. https://doi.org/10.1016/j.compositesb.2012.09.065.
- Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel Wahab, M. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.
- TK, B.S., Nair, A.B., Abraham, B.T., Beegum, P.S. and Thachil, E.T. (2014), "Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications", Polym., 55(16), 3614-3627. https://doi.org/10.1016/j.polymer.2014.05.032.
- Tripathi, S.N., Saini, P., Gupta, D. and Choudhary, V. (2013), "Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization", J. Mater. Sci., 48(18), 6223-6232. https://doi.org/10.1007/s10853-013-7420-8.
- Van Es, M.A. (2001), "Polymer-clay nanocomposites: the importance of particle dimensions", Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- Walker, L.S., Marotto, V.R., Rafiee, M.A., Koratkar, N. and Corral, E.L. (2011), "Toughening in graphene ceramic composites", ACS Nano, 5(4), 3182-3190. https://doi.org/10.1021/nn200319d.
- Wang, J., Shi, Z., Ge, Y., Wang, Y., Fan, J. and Yin, J. (2012), "Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization", Mater. Chem. Phys., 136(1), 43-50. https://doi.org/10.1016/j.matchemphys.2012.06.017.
- Weon, J.I. (2009), "Mechanical and thermal behavior of polyamide-6/clay nanocomposite using continuumbased micromechanical modeling", Macromol. Res., 17(10), 797-806. https://doi.org/10.1007/BF03218617.
- Xia, H., Zhang, X., Shi, Z., Zhao, C., Li, Y., Wang, J. and Qiao, G. (2015), "Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites", Mater. Sci. Eng., 639, 29-36. https://doi.org/10.1016/j.msea.2015.04.091.
- Xu, C., Gao, J., Xiu, H., Li, X., Zhang, J., Luo, F., Zhang, Q., Chen, F. and Fu, Q. (2013), "Can in situ thermal reduction be a green and efficient way in the fabrication of electrically conductive polymer/reduced graphene oxide nanocomposites?", Compos. Part A, 53, 24-33. https://doi.org/10.1016/j.compositesa.2013.06.007.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yousefi, N., Gudarzi, M.M., Zheng, Q., Lin, X., Shen, X., Jia, J., Sharif, F. and Kim, J.K. (2013b), "Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability", Compos. Part A, 49, 42-50. https://doi.org/10.1016/j.compositesa.2013.02.005.
- Yousefi, N., Lin, X., Zheng, Q., Shen, X., Pothnis, J.R., Jia, J., Zussman, E. and Kim, J.K. (2013a), "Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites", Carbon, 59, 406-417. https://doi.org/10.1016/j.carbon.2013.03.034.
- Zeng, X., Yang, J. and Yuan, W. (2012), "Preparation of a poly (methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method", Eur. Polym. J., 48(10), 1674-1682. https://doi.org/10.1016/j.eurpolymj.2012.07.011.
- Zenkour, A. M. (2018b), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
- Zenkour, A.M. (2018a), "Modified couple stress theory for micro-machined beam resonators with linearly varying thickness and various boundary conditions", Arch. Mech. Eng., 65(1), 43-64. https://doi.org/10.24425/119409.
- Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Meth. Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016.
- Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2018), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mat. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444216.
- Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B, 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044.
- Zhou, T., Chen, F., Tang, C., Bai, H., Zhang, Q., Deng, H. and Fu, Q. (2011), "The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite", Compos. Sci. Technol., 71(9), 1266-1270. https://doi.org/10.1016/j.compscitech.2011.04.016.
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and graphene oxide: synthesis, properties, and applications", Adv. Mater., 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068.