References
- Besag J (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society Series B, 48, 259-279.
- Besag J (1986). On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society Series B, 48, 259-302.
- Besag J, York J, and Mollie A (1991). Bayesian image restoration, with two applications in spatial statistics, Annals of the Institute of Statistical Mathematics, 43, 1-59. https://doi.org/10.1007/BF00116466
- Bishop C (2006). Pattern Recognition and Machine Learning, Berlin, Heidelberg, Springer-Verlag.
- Blei DM, Kucukelbir A, and McAuliffe JD (2017). Variational inference: A review for Statisticians, Journal of the American Statistical Association, 112, 859-877. https://doi.org/10.1080/01621459.2017.1285773
- Casella G and George EI (1992). Explaining the Gibbs Sampler, The American Statistician, 46, 167-174. https://doi.org/10.2307/2685208
- Casella G (2001). Emperical Bayes Gibbs sampling, Biostatistics, 2, 485-500. https://doi.org/10.1093/biostatistics/2.4.485
- Dempster AP, Laird NM, and Rubin DB (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38.
- Friedman N (2013). The Bayesian Structural EM Algorithm, arXiv preprint arXiv:1301.7373.
- Gelfand AE and Smith FM (1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Geman S and Geman D (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. https://doi.org/10.1109/TPAMI.1984.4767596
- Hastings WK (1970). Monte Carlo sampling methods using Markov Chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Jordan MI, Ghahramani Z, Jaakkola TS, and Saul LK (1999). An introduction to variational methods for graphical models, Machine Learning, Kluwer Academic Publishers, 37, 183-233. https://doi.org/10.1023/A:1007665907178
- Meng X and Rubin DB (1993). Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, 80, 267-278. https://doi.org/10.1093/biomet/80.2.267
- Metropolis N, Rosenbluth AW, Rosenbluth MN, and Teller AH (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21.
- Nasios N and Bors AG (2006). Variational learning for Gaussian mixture models, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36, 849-862. https://doi.org/10.1109/TSMCB.2006.872273
- Parisi G (1988). Statistical Field Theory, Redwood City, Addison-Wesley.
- Peterson C and Anderson JR (1987). A mean field theory learning algorithm for neural networks, Complex Systems, 1, 995-1019.
- Smith AFM and Roberts GO (1993). Bayesian computation via the Gibbs sampler and Related Markov Chain Monte Carlo Methods, Journal of the Royal Statistical Society Series B, 55, 3-23.
- Tian H, Shen T, Hao B, Hu Y, and Yang N (2009). Image restoration based on adaptive MCMC particle filter. 2009 2nd International Congress on Image and Signal Processing, IEEE, 1-5.
- Tierney L and Kadane JB (1986). Accurate approximations for posterior moments and marginal densities, Journal of American Statistical Association, 81, 82-86. https://doi.org/10.1080/01621459.1986.10478240
- Zhang C, Butepage J, Kjellstrom H, and Mandt S (2019). Advances in variational inference, IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2008-2026. https://doi.org/10.1109/tpami.2018.2889774