참고문헌
- Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1) 84-97. https://doi.org/10.1016/j.enggeo.2005.07.013.
- Cao, P., Liu, T.Y., Pu, C.Z. and Lin, H. (2015), "Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression", Eng. Geol., 187, 113-121. https://doi.org/10.1016/j.ijrmms.2021.104621.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
- da Silva, G. and Einstein, H.H.B. (2013), "Modeling of crack initiation, propagation and coalescence in rocks", Int. J. Fract., 182, 167-186. https://doi.org/10.1007/s10704-013-9866-8.
- Dai, F., Xia, K., Zuo, J.P., Zhang, R. and Xu, N.W. (2013), "Static and dynamic flexural strength anisotropy of Barre granite", Rock Mech. Rock Eng., 46(6), 1589-1602. https://doi.org/10.1007/s00603-013-0390-y.
- Dai, F., Xu, Y., Zhao, T., Xu, N.W. and Liu, Y. (2016), "Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests", Int. J. Rock Mech. Min. Sci., 88, 49-60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
- Erarslan, N. and Williams, D.J. (2012), "Mixed-mode fracturing of rocks under static and cyclic loading", Rock Mech. Rock Eng., 46(5) 1035-1052. https://doi.org/10.1007/s00603-012-0303-5.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28. https://doi.org/10.1016/j.ijrmms.2014.01.008.
- Hamdia, Kh., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6.
- Huang, D., Gu, D., Yang, C., Huang, R. and Fu, G. (2015), "Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression", Rock Mech. Rock Eng., 49(2) 375-399. 10.1007/s00603-015-0757-3.
- Jiang, M., Chen, H. and Crosta, G.B. (2015), "Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model", Int. J. Rock Mech. Min. Sci., 78, 175-189. https://doi.org/10.1016/j.ijrmms.2015.03.031.
- Li, H.Q. and Wong, L.N.Y. (2013), "Numerical study on coalescence of pre-existing flaw pairs in rock-like material", Rock Mech. Rock Eng., 47(6), 2087-2105. https://doi.org/10.1016/j.ijsolstr.2013.07.010.
- Li, Y., Peng, J., Zhang, F. and Qiu, Z. (2016), "Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading", Eng. Geol., 213, 64-73. https://doi.org/10.1016/j.enggeo.2016.08.006.
- Liu, J. and Wang, J. (2018), "Stress evolution of rock-like specimens containing a single fracture under uniaxial loading: A numerical study based on particle flow code", Geotech. Geol. Eng., 38(1), 567-580. https://doi.org/10.1007/s10706-017-0347-0.
- Liu, Y., Dai, F., Dong, L., Xu, N.W. and Feng, P. (2018a), "Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters", Rock Mech. Rock Eng., 51(1), 47-68. https://doi.org/10.1007/s00603-017-1327-7.
- Liu, Y., Dai, F., Feng, P. and Xu, N.W. (2018b), "Mechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parameters", Soild. Dyn. Earthq. Eng., 13, 55-67. https://doi.org/10.1016/j.soildyn.2018.05.030.
- Liu, Y., Dai, F., Zhao, T. and Xu, N.W. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50, 89-112. https://doi.org/10.1007/s00603-016-1085-y.
- O ner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Method. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
- Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Method. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
- Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, S. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Method. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.
- Ren, H., Zhuang X., Cai, Y. and Rabczuk T. (2016), "Dual-horizon peridynamics", Int. J. Numer. Method. Eng., 108, 1451-1476. https://doi.org/10.1002/nme.5257.
- Ren, H., Zhuang, X. and Rabczuk, T. (2017), "Dual-horizon peridynamics: A stable solution to varying horizons", Comput. Method. Appl. Mech. Eng., 318, 762-782. https://doi.org/10.1016/j.cma.2016.12.031.
- Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/acc.2015.3.4.269.
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
- Sarfarazi, V., Haeri, H. and Khaloo, A. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
- Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 44-55. https://doi.org/10.12989/cac.2020.25.6.00.
- Wang, S.Y., Sloan, S.W., Sheng, D.C. and Tang, C.A. (2014), "Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression", Int. J. Solid. Struct., 51(5) 1132-1148. https://doi.org/10.1016/j.ijsolstr.2013.12.012.
- Wang, S.Y., Sloan, S.W., Sheng, D.C. and Tang, C.A. (2016), "3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension", Tectono Physic., 21, 45-67. https://doi.org/10.1016/j.tecto.2016.03.042.
- Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2) 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
- Wong, R.H.C. and Lin, P. (2015), "Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes", Int. J. Rock Mech. Min. Sci., 79, 41-54. https://doi.org/10.1016/j.ijrmms.2015.08.003.
- Xie, Y.S., Cao, P., Liu, J. and Dong, L.W. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
- Xu, Y., Dai, F., Xu, N.W. and Zhao, T. (2016), "Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing", Rock Mech. Rock Eng., 49(3), 731-745. https://doi.org/10.1007/s00603-015-0787-x.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 99-111. https://doi.org/10.12989/sem.2019.72.6.099.
- Zhang, X.P. and Wong, L.N.Y. (2012), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.
- Zhang, X.P., Liu, Q.S., Wu, S.C. and Tang, X.H. (2015), "Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression", Eng. Geol., 199, 74-90. https: //doi.org/ 10.1016/ j.enggeo. 2015 .10.007.
- Zhao, Y.L., Zhang, L.Y., Wang, W.J., Pu, C.Z., Wan, W. and Tang, J.Z. (2016), "Cracking and stress-strain behavior of rocklike material containing two flaws under uniaxial compression", Rock Mech. Rock Eng., 49(7), 2665-2687. https://doi.org/10.1007/s00603-016-0932-1.
- Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001.
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2013), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47(6), 961-1986. https://doi.org/10.1007/s00603-013-0511-7.