DOI QR코드

DOI QR Code

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar (School of Electronic and Optical Engineering, Nanjing University of Science & Technology) ;
  • Hao, Wang (School of Electronic and Optical Engineering, Nanjing University of Science & Technology) ;
  • Zaheer Ahmed, Dayo (College of Computer Science, Huanggang Normal University) ;
  • Falak, Naz (Mehran University of Engineering & Technology) ;
  • Badar, Muneer (Mehran University of Engineering & Technology) ;
  • Muhammad, Aamir (College of Computer Science, Huanggang Normal University)
  • 투고 : 2022.12.05
  • 발행 : 2022.12.30

초록

In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

키워드

참고문헌

  1. Muneer, B., Qi, Z., & Xu, S. A digital SIW phase shifter implemented by switching transverse slots via PIN diodes. Frequenz, vol. 69(9-10), pp. 383-387 (2015). 
  2. Muneer, B., Qi, Z., & Shanjia, X. A broadband tunable multilayer substrate integrated waveguide phase shifter. IEEE Microwave and Wireless Components Letters, 25(4), pp. 220-222 (2015).  https://doi.org/10.1109/LMWC.2015.2400923
  3. Godara, L. C. (Ed.). Handbook of antennas in wireless communications. CRC press (2018). 
  4. Dayo, Z. A., Cao, Q., Wang, Y., Soothar, P., Muneer, B., & Chowdhry, B. S. A compact broadband high gain antenna using slotted inverted omega shape ground plane and tuning stub loaded radiator. Wireless Personal Comm., 113(1), pp. 499-518 (2020).  https://doi.org/10.1007/s11277-020-07227-z
  5. Muneer, B., Shabir, W., Shaikh, F. K., & Qi, Z. Plate-laminated slotted-waveguide fed 2×3 planar inverted f antenna array. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting pp. 2101-2102. IEEE, (2017). 
  6. Xu, C., Soothar, P., Quan, S., Liang, G., & Wang, H. The design of crossover based on microstrip ridge gap waveguide of dual-layer medium, (2021). 
  7. Cao, J., Wang, H., Mou, S., Soothar, P., & Zhou, J. An air cavity-fed circularly polarized magneto-electric dipole antenna array with gap waveguide technology for mm-wave applications. IEEE Transactions on Antennas and Propagation, 67(9), pp. 6211-6216 (2019).  https://doi.org/10.1109/tap.2019.2925186
  8. Schaubert, D. H. Wide-band phased arrays of Vivaldi notch antennas. In Tenth International Conference on Antennas and Propagation (Conf. Publ. No. 436) Vol. 1, pp. 6-12. IET. (1997). 
  9. Soothar, P., Wang, H., Xu, C., Dayo, Z. A., Muneer, B., & Kanwar, K. A compact broadband and high gain tapered slot antenna with stripline feeding network for H, X, Ku and K band applications. International Journal of Advanced Computer Science and Applications, vol. 11(7), (2020). 
  10. Soothar, P., Wang, H., Xu, C., Quan, Y., Dayo, Z. A., Aamir, M., & Muneer, B., A Miniaturized Broadband and High Gain Planar Vivaldi Antenna for Future Wireless Communication Applications. International Journal of Antennas and Propagation, vol. 2021, (2021). 
  11. Lekshmi, B. S. K., & Raglend, I. J. Parametric study of tapered slot antenna for wideband applications. In 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) pp. 0071-0077. IEEE, (2015). 
  12. Chio, T. H., & Schaubert, D. H. Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays. IEEE Transactions on Antennas and Propagation, vol. 48(6), pp. 879-886 (2000).  https://doi.org/10.1109/8.865219
  13. Shin, J., & Schaubert, D. H. A parameter study of stripline-fed Vivaldi notch-antenna arrays. IEEE Transactions on Antennas and Propagation, vol. 47(5), pp. 879-886 (1999).  https://doi.org/10.1109/8.774151
  14. Ansoft, H. F. S. S. "V11 User's Guide, 2009." HFSS, Ansoft Corporation, Pittsburgh, USA. 2009. 
  15. Dardeer, O. M., Abouelnaga, T. G., Mohra, A. S., & El-Hennawy, H. M. A novel UWB Vivaldi antenna array for radar applications. International Journal of Scientific & Engineering Research, vol. 7(5), pp. 1169-1174 (2016). 
  16. Lewis, L., Fassett, M., & Hunt, J. A broadband stripline array element. In 1974 Antennas and Propagation Society International Symposium Vol. 12, pp. 335-337. IEEE. (1974). 
  17. Oreyzi, H., & Jam, S. Analysis of the tapered slot antenna by the method of least squares, (2005). 
  18. Kedar, A., & Beenamole, K. Wide beam tapered slot antenna for wide angle scanning phased array antenna. Progress In Electromagnetics Research B, 27, pp. 235-251 (2011).  https://doi.org/10.2528/PIERB10100508
  19. Kishore, M. R., Janardhana, A., & Krishna, B. M. Design and Simulation of Dual Band T-Shaped Slot Microstrip Antenna for C-Band Applications. Int. Journal of Engineering Research and Technology, vol. 4(09), (2015). 
  20. Soothar, P., Wang, H., Muneer, B., Dayo, Z. A., & Chowdhry, B. S. A broadband high gain tapered slot antenna for underwater communication in microwave band. Wireless Personal Communications, vol. 116(2) pp.1025-1042 (2021).  https://doi.org/10.1007/s11277-019-06633-2
  21. Dayo, Z. A., Cao, Q., Wang, Y., Soothar, P., Khoso, I. A., Shah, G., & Aamir, M. A compact high gain multiband bowtie slot antenna with miniaturized triangular shaped metallic ground plane. The Applied Computational Electromagnetics Society Journal (ACES), pp.935-945 (2021). 
  22. Wu, B., Wang, H., Liu, X., Ding, Z., Quan, S., Cao, J., & Soothar, P. Optimization to the scan blindness of vivaldi array with metallic T-shaped structure. In 2019 IEEE MTT-S International Wireless Symposium (IWS) pp. 1-3. IEEE. (2019). 
  23. Liu, X., Wang, H., Wu, B., Quan, S., Cao, J., & Soothar, P. A novel wide bandwidth antenna design and application in wide beam scanning phased array. In 2019 IEEE MTT-S International Wireless Symposium (IWS) pp. 1-3. IEEE. (2019). 
  24. Dayo, Z. A., Cao, Q., Wang, Y., Rahman, S. U., & Soothar, P. A compact broadband antenna for civil and military wireless communication applications. International Journal of Advanced Computer Science and Applications, vol. 10(9). (2019). 
  25. Dayo, Z. A., Cao, Q., Soothar, P., Lodro, M. M., & Li, Y. A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications. In 2019 IEEE international conference on computational electromagnetics (ICCEM) pp. 1-3. IEEE, (2019). 
  26. Chandio M., Jamali A. A., Jokhio F. A., Anjum M. R., Arain Z. A., Soothar P.; Triangular Nanoparticle Based Plasmonic Biosensor; Sindh University Research Journal (Science Series) SURJ. Vol 52(2), (2020). 
  27. Keerthi, V. H. R., Khan, D. H., & Srinivasulu, D. P. Design of C-band microstrip patch antenna for radar applications using IE3D. IOSR Journal of Electronics and Communication Engineering, 5(3), pp. 49-58 (2013).  https://doi.org/10.9790/2834-0534958
  28. Guha, D., & Antar, Y. M. (Eds.). Microstrip and printed antennas: new trends, techniques and applications. John Wiley & Sons., (2011). 
  29. Bhalla, D., & Bansal, K. Design of a rectangular microstrip patch antenna using inset feed technique. IOSR Journal of Electronics and Communication Engineering, vol. 7(4), pp. 08-13 (2013).  https://doi.org/10.9790/2834-0740813
  30. Xiaoxing Y., et al. "An ultra-wideband tapered slot antenna." Antennas and Propagation Society International Symposium, 2005 IEEE. Vol. 2. IEEE, 2005. 
  31. Dayo, Z. A., Aamir, M., Dayo, S. A., Khoso, I. A., Soothar, P., Sahito, F., ... & Guan, Y. A novel compact broadband and radiation efficient antenna design for medical IoT healthcare system. Mathematical Biosciences and Engineering, vol. 19(4), pp. 3909-3927 (2022).  https://doi.org/10.3934/mbe.2022180
  32. Constantine A. B., "Antenna theory analysis and design." John Willey and Son's Inc., New York (1997). 
  33. Rahman, M. M., & Islam, M. F. Double U-slot microstrip patch antenna for WLAN and WiMAX applications. Int. J. Comput. Appl, pp. 0975-8887 (2017).