
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

197

Manuscript received December 5, 2022
Manuscript revised December 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.12.25

Analysis and Comparison of Sorting Algorithms (Insertion,
Merge, and Heap) Using Java

Khaznah Alhajri1, Wala Alsinan1, Sahar Almuhaishi1, Fatimah Alhmood1, Narjis AlJumaia1, and Azza.A.A1∗

2190004752@iau.edu.sa, 2190004429@iau.edu.sa, 2200005060@iau.edu.sa, 2200004124@iau.edu.sa,
2190000716@iau.edu.sa, aaaali@iau.edu.sa

1Computer Science Department, College of Science and Humanities Imam Abdulrahman

Bin Faisal University, P.O.Box 31961, Jubail, Saudi Arabia

Abstract
Sorting is an important data structure in many applications in the
real world. Several sorting algorithms are currently in use for
searching and other operations. Sorting algorithms rearrange the
elements of an array or list based on the elements’ comparison
operators. The comparison operator is used in the accurate data
structure to establish the new order of elements. This report
analyzes and compares the time complexity and running time
theoretically and experimentally of insertion, merge, and heap sort
algorithms. Java language is used by the NetBeans tool to
implement the code of the algorithms. The results show that when
dealing with sorted elements, insertion sort has a faster running time
than merge and heap algorithms. When it comes to dealing with a
large number of elements, it is better to use the merge sort. For the
number of comparisons for each algorithm, the insertion sort has
the highest number of comparisons.
Keywords
Insertion sort, Merge sort, Heap sort, and Sorting algorithms.

I. INTRODUCTION

In real-world applications, it is necessary to arrange
the data in a sorted order to perform searching and other
operation efficiently such as particular records in the
database, roll numbers in the merit list, a particular page
in a book, and others. All this would have been a mess
if the data was kept unsorted [12]. Fortunately, there is
an algorithm called a sorting algorithm, it takes a list of
items as input data, performs specific operations on
those lists, and delivers an ordered list as output. The
use of algorithms did not begin with the introduction of
computers, people use them while they are solving
problems. We can describe algorithms as a finite
sequence of rules which describes and analyze the
algorithms [8]. In this report, three sorting algorithms
are discussed to check the performance and comparison
of all these algorithms based on time complexity and
running time. Time complexity is based on the amount
that the computer time takes to run an algorithm. Time
complexity is commonly estimated by counting the

number of elementary operations performed by the
algorithm, supposing that each elementary operation
takes a fixed amount of time to perform [7]. The
number of primitive operations or "steps" executed by
an algorithm on a specific input determines its running
time. It is preferable to define the concept of step as
machine-independently as possible [7]. An analysis is
made for each algorithm by finding the best case, worst
case, and average case. We check how much processing
time is taken by all three sorting algorithms and
compared them and finding which sorting algorithm
takes less time to sort the elements from 1000 to
200,000. If any algorithm takes less processing time it
means that it sorts the element faster than others [5].
The main role of the sort algorithm is to operate in the
largest data set [11]. The main function of sorting is to
organize and filter the largest amount of data. The
performance of the database depends on the type of sort
algorithm that is used [12]. The choice of algorithm
accuracy depends on the most important factors: user’s
hardware, software available, and comfort of use of the
database [12]. The sorting algorithms that will be
included in this report are insertion sort, merge sort and
heap sort.

This paper is structured as follows: Section II
provides the literature review. Section III presents the
background of the three algorithms. In Section IV the
details about methodology and experimental setup have
been provided; followed by results in Section V. Finally,
the conclusion is in Section VI.

II. BACKGROUND

A. Insertion Sort Algorithm

Insertion sort is an incremental algorithm that inserts
items into the proper place. The first element in the left

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

198

hand will be considered as sorted. Then the second
element will be compared to the first element. If the
first element is greater than the second, the first element
is placed on the right side; otherwise, nothing occurs.
Similarly, all unsorted elements will be taken and
placed in their proper place from the smallest element
to the largest element [6]. The running time of
INSERTION-SORT on an input of n values, we sum
the products of the cost and times columns. The
performance analysis of insertion sort in three cases,
which are:

• Running time in best case happens when all
elements are already ordered, the complexity time
can be calculated as T(n) =O(n).

• Running time in worst case when elements are

arranged in reverse, and the complexity time can

be calculated as T(n) =O(n2).

• Running time in average case is often roughly as
bad as the worst case. Half the elements are sorted
and the other half of the elements are unsorted. ,
The complexity time can be calculated as T(n)
=O(n2).

The insertion sort is simple and has a good running time
in the best case. However, insertion sort has a long
running time in worst and average cases.

B. Merge Sort Algorithm

Merge sort is in place order and follows the divide
and conquer approach. The Merge Sort Algorithm is an
inplace order recursive algorithm. The array of size n is
divided into the largest number of log n subarrays and
merging them into a single array takes O(n) time. The
time complexity of the Merge sort is O(nlogn) in all
three cases. The relation of Merge sort time complexity:
T(n) = 2T(n/2)+O(n). Merge sort has three steps. First,
dividing problems into sub-problems. Second, conquer
the subproblems by solving them recursively. Third,
combine the solution of these sub-problems [13]. The
running time of each step can be expressed as:

• Divide: The division step. Computing the middle of

the subarray, takes constant time. Thus, D(n) =O(1).

• Conquer: Recursively solve two subproblems of

size n = 2, which contributes 2T(n/2) to the running

time. • Combine: The merge procedure on an n-

element subarray takes time O(n), and so C(n) =O(n)

[7].

Merge sort is faster in larger lists because it does not
run over the entire list many times. In addition, the
merge sort has a consistent running time of (nlogn) in
all three cases. On the other hand, Merge sort is slower
than the other sort algorithms for smaller data sets and
requires more memory space to store the sub-lists. That
means it takes up more space [3].

C. Heap Sort Algorithm

Heap sort is an improved sort algorithm of selection
sort. This is performed on the heap data and the heap is
basically the complete binary tree [2]. It is also a
comparison-based sorting technique based on the
Binary Heap data structure. The heap sort algorithm is
in place order and can max heap (the root is the largest
element and bigger than its children)or min heap (the
root is the smallest element and is smaller than its
children) [13]. The complexity of heap sort is O(nlogn)
for all the cases. Because the time complexity of
building a heap is O(n) and n−1 call heapify that takes
O(logn) and the complete time complexity is O(nlogn)
[2]. it will work like this, First, create a heap from the
input array, Second it will visualize the array with the
correct property of binary tree by using heapify (iterate
each node), Finally apply heap sort(for all tree
violations) all of them inside Build function [4]. The
advantages of heap sort are optimized performance,
efficiency, and accuracy are a few of the best qualities
of this algorithm. The algorithm is also highly
consistent with very low memory usage. No extra
memory space is required to work, unlike the Merge
Sort or recursive Quick Sort. However, heap sort is
considered unstable, expensive, and not very efficient
when working with highly complex data [10].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

199

Manuscript received December 5, 2022
Manuscript revised December 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.12.25

III. METHODOLOGY

A. Experimental Setup

This section presents the used machine and platform.

1) Used Machine: MacBook Pro. The startup
disk is Macintosh HD. The operating system is iOS
and the software version is macOS Monterey. The
processor is a Quad-Core Intel Core i5 with a speed
of 1.4 GHz and 8 GB memory.

2) Used Tools:

• Apache NetBeans is used to run Java language
code. NetBeans is a Java-integrated development
environment (IDE). NetBeans enables the
development of applications from a set of modular
software components known as modules.
NetBeans is available for Windows, macOS, Linux,
and Solaris [9].

• Microsoft Excel is used to analyze the results.
Excel is the industry-leading spreadsheet software
program, a powerful data visualization, and
analysis tool [1].

B. Data Generation

This section explains how the data was generated in
our program.

1) Algorithms inputs selection: The inputs were
selected depending on the entered array size by the user
as shown in Figure 1 below, then all algorithms will be
tested for all the sizes entered for three cases (best,
average, and worst). This way was used to minimize the
time consumed for entering each size separately. The
array types can be in three orders:

• Increasing (Best Case): Use the same array after

sorting. This array is considered the best case.

• Random (Average Case): Generate an array of

unsorted elements using a random method of

package

"java.util.Random".
• Decreasing (Worst Case): Generate a reversed

array with decreasing sorted elements.

 Fig. 1. Program main screen

The random method will is used to display different
numbers from 0 to 2000. Every time the code runs, it
will generate different array elements due to using the
random method. In the increasing case, the program
will use the same array of the random, but after being
sorted. While in the decreasing, a for loop is used to sort
elements decreasingly.

2) Timing Mechanism: The program uses the same
array in every algorithm to find the running time. The n
tested sizes are 1000, 2000, 10000, 20000, 50000,
100000, 150000, and 200000. To find the execution
time, nanoTime() method in Java was used. The method
works by taking the start time and end time of the
system in the following format: long (object for start or
end) = System.nanoTime(). Then, subtract the start time
from the end time as follow: long (object name to save
the results) = end - start. Finally, the results in section
IV will be shown in milliseconds.

IV. RESULTS

A. Performance of Three Sorts

This section compares the best performance of three
sorts in terms of the number of comparisons in the worst
case and running time in different cases, which are, the
best case, the average case, and the worst case.

1) Best Case Running Time:: Table I and Figure
2 show the running time of three sort algorithms in the
increasing array based on the number of elements and
the used algorithm. The results show that as the number
of elements increases, the execution time also increases.
However, the insertions sort has the lowest running
time in this case.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

200

TABLE I
COMPARISON OF ALGORITHMS IN BEST CASE

 Best Case

of Elements Insertion Merge Heap

1000 33.503 965.819 952.486
2000 24.516 2073.397 1175.025

10000 123.022 539.335 5265.575
20000 245.264 1169.774 1008.147
50000 629.535 21382.793 25952.665
100000 1271.088 40686.591 53284.744
150000 1715.798 64203.761 83897.952
200000 2412.414 117437.992 130566.874

 Fig. 2. Best case of three sorts

2) Average Case Running Time: Table II and
Figure 3 show the running time of three sort algorithms
in the random array elements based on the number of
elements and the used algorithm. The results show that
as the number of elements increases, the execution time
of insertion sort also increases, which agrees with the
theory that the complexity of insertion sort in average
and worst cases is O(n2). However, the insertions sort
has the highest running time in this case. The merge
sort has less running time than the heap sort.

TABLE II
COMPARISON OF ALGORITHMS IN AVERAGE CASE

 Average Case

of Elements Insertion Merge Heap

1000 754.874 1122.511 978.721
2000 329.914 2424.892 120.403

10000 7598.451 5916.253 550.802
20000 34739.784 14353.147 10799.151
50000 220007.479 24870.058 28464.242
100000 868804.217 4954.337 57776.533

150000 1960932.746 67756.309 98784.478
200000 393903.125 109421.212 134257.488

 Fig. 3. Average case of three sorts

3) Worst Case Running Time: Figure 4 and
Table III show the running time of three sorting
algorithms in the decreasing array based on the number
of elements and the used algorithm. The results show
that as the number of elements increases, the execution
time of insertion sort also increases, which agrees with
the theory that the complexity of insertion sort in
average and worst cases is O(n2). However, the
insertions sort has the highest running time in this case.
The merge sort has less running time than the heap sort
(same as the average case).

TABLE III
COMPARISON OF ALGORITHMS IN WORST CASE

 Worst Case

of Elements Insertion Merge Heap

1000 1926.143 1599.623 1203.553
2000 7298.100 2122.927 1248.841

10000 7911.923 8165.13 5574.589
20000 33122.914 12371.737 1055.474
50000 224438.002 25566.416 27903.156
100000 870811.548 50668.821 57986.197
150000 1992570.014 67747.504 92434.554
200000 3634577.868 103713.9 137524.641

 Fig. 4. Worst case of three sorts

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

201

Manuscript received December 5, 2022
Manuscript revised December 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.12.25

4) Number of Elements vs Number of
Comparisons vs Running Time: A comparison has
been done based on the number of elements, the
number of comparisons, and the running time of each
algorithm in the worst case. Figure 5 illustrates the
number of comparisons and running time based on the
number of elements (n). Where CI and RTI are the
comparison and running time of insertion sort, CM and
RTM are the comparison and running time of merge
sort, and CH and RTH are the comparison and running
time of heap sort. The number of comparisons can be
calculated as follows:

• Number of comparisons in insertion sort =
n2/2.

• Number of comparisons in merge sort = logn.

• Number of comparisons in heap sort = nlogn.

 Fig. 5. # of Elements vs # of Comparisons vs Running Time

5) Discussion of the best performance sorting
algorithm: The running time of all the existing
algorithms are listed in Tables I, II, and III and shown
in Figures 2, 3, 4, and 5. The running time of each
algorithm is given in terms of milliseconds. The
number of elements gradually increased, and the
corresponding running time is separately recorded by
running the algorithms. As shown in the previously
mentioned tables and figures, as the number of
elements increases, the running time and number of
comparisons also increase for all algorithms. However,
the algorithms using the incremental list, which is the
best case, achieved relatively less execution time.
Furthermore, in the best case, the performance of the
insertion sort becomes faster when the list is sorted and
has a minimum number of elements, which is more
efficient than the heap and merge sorts even when the

list elements number increases. In the average and
worst cases, the performance of the merge sort is faster
than the insertion and heap sorts when they have a large
number of elements because the merge sort algorithm
uses the divide and conquer technique with running
time O(nlogn). For the number of comparisons, the
insertion sort has the highest number of comparisons as
the number of elements increases. However, the merge
and heap sorting algorithms have the same number of
comparisons because of the same previously mentioned
comparison count formula.

B. Theoretical VS Experimental Results Comparison

In this section, experimental results of all cases in all
sorting algorithms with their expected theoretical result
are compared.

1) Insertion Sort: The results of each case are
shown Theoretically and experimentally in Table IV.
The results of the insertion sort experimentally agree
with the theoretical analysis of insertion sort, which is
O(n) for the best case and O(n2) for the average and
worst cases. Figure 6, 7, and 8 illustrate the line graph
on insertion in all cases.

 Fig. 6. Best case of insertion sort

 Fig. 7. Average case of insertion sort

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

202

 Fig. 8. Worst case of insertion sort

2) Merge Sort: The results of each case in merge
sort are shown Theoretically and experimentally in
Table V. The results of the merge sort experimentally
agree with the theoretical analysis of merge sort, which
is O(n log n) in all cases. Figure 9, 10, and 11 illustrate
the merge in all cases.

 Fig. 9. Best case of Merge sort

Fig. 10. Average case of Merge sort

Fig. 11. Worst case of Merge sort

3) Heap Sort: The results of each case in heap
sort are shown Theoretically and experimentally in
Table VI. The results of the heap sort experimentally
agree with the theoretical analysis of heap sort, which
is O(n log n) in all cases. Figure 12, 13, and 14 illustrate
the heap in all cases.

 Fig. 12. Best case of heap sort

TABLE IV
THEORETICAL(T) VS EXPERIMENTAL(E) RESULTS OF INSERTION SORT

n Best Average Worst
 T E T E T E

1000 1000 33.503 1000000 754.874 1000000 1926.143
2000 2000 24.516 4000000 329.914 4000000 72.98100

10000 10000 123.022 100000000 7598.451 100000000 7911.923
20000 20000 245.264 400000000 34739.784 400000000 33122.914
50000 50000 629.535 2500000000 220007.479 2500000000 224438.002
100000 100000 1271.088 10000000000 868804.217 10000000000 870811.548
150000 150000 1715.798 25500000000 1960932.746 25500000000 1992570.014
200000 200000 2412.414 40000000000 3939031.25 40000000000 3634577.868

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

203

Manuscript received December 5, 2022
Manuscript revised December 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.12.25

 Fig. 13. Average case of heap sort

 Fig. 14. Worst case of heap sort

V. CONCLUSION

Sorting is an important data structure in many
applications in the real world. Several sorting
algorithms are currently in use for searching and other

operations. Sorting algorithms rearrange the elements
of an array or list based on the elements’ comparison
operators. The comparison operator is used in the
accurate data structure to establish the new order of
elements. This paper analyzed and compared the time
complexity and running time theoretically and
experimentally of insertion, merge, and heap sort
algorithms. Java language was used by the NetBeans
tool to implement the code of the algorithms. Microsoft
Excel was used to present the experimental results
figures. The results show that when dealing with sorted
elements, insertion sort operates in a faster running time
than merge and heap algorithms. When it comes to
dealing with a large number of elements, it is better to
use the merge sort. For the number of comparisons for
each algorithm, the insertion sort has the highest
number of comparisons.

TABLE V
THEORETICAL(T) VS EXPERIMENTAL(E) RESULTS OF MERGE SORT

n Be st Average Worst
- T E T E T E

1000 9965.784285 965.819 9965.784285 1122.511 9965.784285 1599.623
2000 21931.56857 2073.397 21931.56857 2424.892 21931.56857 2122.927

10000 132877.1238 539.335 132877.1238 5916.253 132877.1238 8165.13
20000 285754.2476 1169.774 285754.2476 14353.147 285754.2476 12371.737
50000 780482.0237 21382.793 780482.0237 24870.058 780482.0237 25566.416
100000 1660964.047 40686.591 1660964.047 4954.337 1660964.047 50668.821
150000 2579190.446 64203.761 2579190.446 67756.309 2579190.446 67747.504
200000 3521928.095 117437.992 3521928.095 109421.212 3521928.095 1037.139

TABLE VI
THEORETICAL(T) VS EXPERIMENTAL(E) RESULTS OF HEAP SORT

n Be st Average Worst
- T E T E T E

1000 9965.784285 952.486 9965.784285 978.721 9965.784285 1203.553
2000 21931.56857 1175.025 21931.56857 120.403 21931.56857 1248.841

10000 132877.1238 5265.575 132877.1238 550.802 132877.1238 5574.589
20000 285754.2476 1008.147 285754.2476 10799.151 285754.2476 1055.474
50000 780482.0237 25952.665 780482.0237 28464.242 780482.0237 27903.156
100000 1660964.047 53284.744 1660964.047 57776.533 1660964.047 57986.197
150000 2579190.446 83897.952 2579190.446 98784.478 2579190.446 92434.554
200000 3521928.095 130566.874 3521928.095 134257.488 3521928.095 137524.641

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

204

REFERENCES

[1] Microsoft excel spreadsheet software: Microsoft 365.
[2] Humaira Ali, Haque Nawaz, and Abdullah Maitlo.

Performance analysis of heap sort and insertion sort
algorithm. International Journal, 9(5), 2021.

[3] Ayush Arora. Sorting algorithms-
properties/pros/cons/comparisons, Dec 2019.

[4] Marco Benini and Federico Gobbo. Algorithms and
their explanations. In Conference on Computability in
Europe, pages 32–41. Springer, 2014.

[5] Ashutosh Bharadwaj and Shailendra Mishra.
Comparison of sorting algorithms based on input
sequences. International Journal of Computer
Applications, 78(14), 2013.

[6] Miss Pooja K Chhatwani. Insertion sort with its
enhancement. International Journal of Computer
Science and Mobile Computing, 3(3):801–806, 2014.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2022.

[8] Jehad Hammad. A comparative study between various
sorting algorithms. International Journal of Computer
Science and Network Security (IJCSNS), 15(3):11,
2015.

[9] Patrick Keegan, Ludovic Champenois, and Gregory
Crawley. Netbeans™ ide field guide, 2006.

[10] Christos Levcopoulos and Ola Petersson. Adaptive
heapsort. Journal of Algorithms, 14(3):395–413, 1993.

[11] Zbigniew Marszałek. Performance test on triple heap
sort algorithm. Technical Sciences/University of
Warmia and Mazury in Olsztyn, 2017.

[12] Smita Paira, Sourabh Chandra, Sk Safikul Alam, and
Partha Sarthi Dey. A review report on divide and
conquer sorting algorithm. IEEE Kolkata Section,
pages 978–993, 2014.

[13] Russel Schaffer and Robert Sedgewick. The analysis of
heapsort.

Journal of Algorithms, 15(1):76–100, 1993.

