Acknowledgement
This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 604-305-1443.The authors, therefore, acknowledge with thanks DSR for technical and financial support.
References
- Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Mathem. Modelling., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533 https://doi.org//10.1016/j.apm.2021.03.008
- Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Ansari, R., Ashrafi, M.A., Pourashraf, T. And Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51. https://doi.org//10.1016/j.actaastro.2014.12.015.
- Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. http://dx.doi.org/10.12989/sem.2017.64.6.683
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683
- Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. http://dx.doi.org/10.12989/sem.2016.60.4.707.
- Barati, M.R. and Shahverdi, H. (2017), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. http://dx.doi.org/10.1080/15376494.2016.1196788.
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct, 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E. A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Structures, 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.
- Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2021), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2022), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol., 18(10), 1778-1809. https://doi.org/10.1016/j.dt.2021.09.011.
- Daikh, A.A., Houari, M.S.A., Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Elmascri, S., Bessaim, A., Taleb, O., Houari, M.S.A., Mohamed, S., Bernard, F. and Tounsi, A. (2020), "A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments", Struct. Eng. Mech., 75(2), 193-209. https://doi.org/10.12989/sem.2020.75.2.193.
- Emadi, M., Nejad, M.Z., Ziaee, S. and Hadi, A. (2021), "Buckling analysis of arbitrary two-directional functionally graded nanoplate based on nonlocal elasticity theory using generalized differential quadrature method", Steel Compos. Struct., 39(5), 565-581. http://dx.doi.org/10.12989/scs.2021.39.5.565.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Element. Anal. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005.
- Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Latin Amer. J. Solids Struct., 12, 808-830. https://doi.org/10.1590/1679-78251525.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. doi.org/10.1007/s10999-021-09555-9.
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405.
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E. A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
- Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-803. doi.org/10.12989/scs.2021.41.6.787.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Houari, T., Bessaim, A., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018), "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. http://dx.doi.org/10.12989/sem.2020.73.2.191.
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
- Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K. L., Evoy, S. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), 3063. https://doi.org/10.1088/0957-4484/17/12/042.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads", Int. J. Mech. Sci., 201, 106474. https://doi.org/10.1016/j.ijmecsci.2021.106474.
- Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215.
- Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H. and Eltaher, M.A. (2022), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathematics, 10(3), 408. https://doi.org/10.3390/math10030408.
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rational Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490.
- Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43(2), 711-725.
- Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6812.
- Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solids Struct., 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X.
- Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021b), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel Compos. Struct., 41(2), 149-166. https://doi.org/10.12989/scs.2021.41.2.149.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021a), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies Thermal Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389.
- Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. http://dx.doi.org/10.12989/scs.2018.29.1.053.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. http://dx.doi.org/10.12989/scs.2020.37.1.027.
- Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. http://dx.doi.org/10.12989/anr.2021.10.1.025.
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(01), 1750008. https://doi.org/10.1142/S1758825117500089.
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(01), 1750008.
- Taleb, O., Houari, M.S.A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4), 369-383. https://doi.org/10.12989/sem.2018.67.4.369.
- Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
- Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mechanica., 225(3), 951-964. https://doi.org/10.1007/s00707-013-0994-z.
- Tong, L.H., Lin, F., Xiang, Y., Shen, H.S. and Lim, C.W. (2021), "Buckling analysis of nanoplates based on a generic third-order plate theory with shear-dependent non-isotropic surface stresses", Compos. Struct., 265, 113708. https://doi.org/10.1016/j.compstruct.2021.113708.
- Tu, T.M., Quoc, T.H. and Van Long, N. (2019), "Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments", Aerosp. Sci. Technol., 84, 698-711. https://doi.org/10.1016/j.ast.2018.11.010.
- Van Vinh, P. (2022), "Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter", Physica E: Low-Dimens. Syst. Nanostruct., 135, 114951. https://doi.org/10.1016/j.physe.2021.114951.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
- Zheng, X., Huang, M., An, D., Zhou, C. and Li, R. (2021), "New analytic bending, buckling, and free vibration solutions of rectangular nanoplates by the symplectic superposition method", Sci. Report. 11(1), 1-16. https://doi.org/10.1038/s41598-021-82326-w.