DOI QR코드

DOI QR Code

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction

  • Haibo, Jiang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Haozhen, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Jinpeng, Wu (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Zhuangcheng, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Shu, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Gongfa, Chen (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
  • Received : 2021.10.20
  • Accepted : 2022.11.01
  • Published : 2022.12.25

Abstract

Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.

Keywords

Acknowledgement

The research presented was funded by National Natural Science Foundation of China (52208156, 51778150), Science and Technology Planning Project of Guangzhou city (201804010422) in China, and Natural Science Foundation of Guangdong Province, China (2016A030313699). The authors gratefully acknowledge their generous supports and declare that they have no conflict of interests.

References

  1. AASHTO (2014), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, D.C., USA
  2. Akhnoukh, A.K. and Buckhalter, C. (2021), "Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges", Case Stud. Constr. Mater., 15, e00559. https://doi.org/10.1016/j.cscm.2021.e00559.
  3. ASTM A370-14 (2014), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, USA
  4. ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, USA
  5. ASTM C1231/C1231M-15 (2015), Standard Practice for Use of Unbond Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete specimens, ASTM International, West Conshohocken, PA, USA
  6. ASTM C1437-15 (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA
  7. ASTM C29/C29M-16 (2016), Standard Test Method for Bulk Density and Voids in Aggregate, ASTM International, West Conshohocken, PA, USA
  8. ASTM C469/C469M-14 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA
  9. ASTM C496/C496M-11 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA
  10. ASTM F3125/F3125M-15a (2015), Standard Practice for High Strength Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength, Inch and Metric Dimensions, ASTM International, West Conshohocken, PA, USA
  11. Ataei, A., Bradford, M.A. and Liu, X. (2016), "Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors", Eng. Struct., 114(6), 1-13. https://doi.org/10.1016/j.engstruct.2015.10.041.
  12. Ataei, A., Zeynalian, M. and Yazdi, Y. (2019), "Cyclic behaviour of bolted shear connectors in steel-concrete composite beams", Eng. Struct., 198, 109455. https://doi.org/10.1016/j.engstruct.2019.109455.
  13. Bai, J.L., He, J., Li, C., Jin, S.S. and Yang, H. (2022), "Experimental investigation on the seismic performance of a novel damage-control replaceable RC beam-to-column joint", Eng. Struct., 267, 114692. https://doi.org/10.1016/j.engstruct.2022.114692.
  14. Buttry, K. (1965), Behavior of Stud Shear Connectors in Lightweight and Normal-Weight Concrete, Report No. 68-6; Missouri Cooperative Highway Research Program, Missouri State Highway Department and University of Missouri-Columbia, Missouri, USA
  15. Cao, J.H., Shao, X.D., Deng, L. and Gan, Y.D. (2017), "Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer", J. Bridge Eng., 22(5), 4017005. https://doi.org/10.1061/(ASCE)BE.1943-592.0001031.
  16. Chen, B.C., Liu, A.R. Zhang, J.P. Zhang, F. and Bradford, M.A. (2022), "Behavior of T-shaped embedded-nut bolted shear connectors in prefabricated steel-concrete composite beams", Eng. Struct., 272, 114983. https://doi.org/10.1016/j.engstruct.2022.114983.
  17. Chen, Y.T., Zhao, Y., West, J.S. and Walbridge, S. (2014), "Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading", J. Constr. Steel Res., 103, 168-178. https://doi.org/10.1016/j.jcsr.2014.09.001.
  18. CSA S6-14 (2014), Canadian Highway Bridge Design Code, Canadian Standards Association (CSA), Mississauga, Canada.
  19. Denisiewicz, A. and Kuczma, M. (2015), "Two-scale modelling of reactive powder concrete. Part III: Experimental tests and validation", Eng. Trans., 63, 55-76.
  20. Dieng, L., Marchand, P., Gomes, F., Tessier, C. and Toutlemonde, F. (2013), "Use of UHPFRC overlay to reduce stresses in orthotropic steel decks", J. Constr. Steel Res., 89, 30-41. https://doi.org/10.1016/j.jcsr.2013.06.006.
  21. Eurocode 3 (2005), Design of Steel Structures. Part 1-8: Design of Joints, European Committee for Standardization; Brussels, Belgium.
  22. Eurocode 4 (2004), Design of Composite Steel and Concrete Structure, Part 2: General rules for bridge, European Committee for Standardization; Brussels, Belgium.
  23. Fang, S., Li, L.J., Lin, L.H., Wang, H.L. Fang, Z.C. Li, Z.W. Xiong, Z. and Liu, F. (2021), "FRP interlocking multi-spiral reinforced square concrete columns: A promising compression application for marine engineering", Eng. Struct., 244, 112733. https://doi.org/10.1016/j.engstruct.2021.112733.
  24. Fang, Z.C., Fang, H.Z., Huang, J.X., Jiang, H.B. and Chen, G.F. (2022a), "Static behavior of grouped stud shear connectors in steel-precast UHPC composite structures containing thin full-depth slabs", Eng. Struct., 252, 113484. https://doi.org/10.1016/j.engstruct.2021.113484.
  25. Fang, Z.C., Fang, H.Z., Li, P.J., Jiang, H.B. and Chen, G.F. (2022b), "Interfacial shear and flexural performances of steel-precast UHPC composite beams: Full-depth slabs with studs vs. demountable slabs with bolts", Eng. Struct., 260, 114230. https://doi.org/10.1016/j.engstruct.2022.114230.
  26. Fang, Z.C., Jiang, H.B., Chen, G.F., Dong, X.T. and Shao, T.F. (2020), "Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams", Steel Compos. Struct., 34(6), 837-854. https://doi.org/10.12989/scs.2020.34.6.837.
  27. Fang, Z.C., Jiang, H.B., Xiao, J., Dong, X.T. and Shao, T.F. (2021a), "Shear performance of UHPC-filled pocket connection between precast UHPC girders and full-depth precast concrete slabs", Structures, 29, 328-338. https://doi.org/10.1016/j.istruc.2020.11.038.
  28. Fang, Z.C., Liang, W.B., Fang, H.Z., Jiang, H.B. and Wang, S.D. (2021b), "Experimental investigation on shear behavior of high-strength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading", Eng. Struct., 244, 112777. https://doi.org/10.1016/j.engstruct.2021.112777.
  29. GB 50017-2017 (2017), Standard for design of steel structures, Minster of Housing and Urban-Rural development of the People's Republic of China, China Architecture & Building Press; Beijing, China [In Chinese]
  30. GB 50917-2013 (2013), Code for Design of Steel Concrete Composite Bridge, Minster of Housing and Urban-Rural development of the People's Republic of China, China Planning Press; Beijing, China.
  31. Graybeal, B.A. (2007), "Compressive behavior of ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 2(104), 146-152. https://orcid.org/0000-0002-3694-1369.
  32. Graybeal, B.A. (2009), Structural Behavior of a Prototype Ultra-High-Performance Concrete Pi-Girder, Report No. FHWA-HRT-10-027; McLean, VA. Federal Highway Administration, WASHINGTON, DC 20590, USA
  33. He, S.H., Fang, Z. and Mosallam, A.S. (2017), "Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders", Eng. Struct., 135(15), 177-190. https://doi.org/10.1016/j.engstruct.2017.01.008.
  34. He, S.H., Li, Q.F. Yang, G. Zhou, X. and Mosallam, A.S. (2022), "Experimental study on flexural performance of HSS-UHPC composite beams with perfobondstrip connectors", J. Struct. Eng., 148(6), 04022064. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003366.
  35. Hu, Y.Q., Meloni, M., Cheng, Z., Wang, J.Q. and Xiu, H.L. (2020), "Flexural performance of steel-UHPC composite beams with shear pockets", Structures, 27, 570-582. https://doi.org/10.1016/j.istruc.2020.05.039.
  36. Johnson, R. and May, I. (1975), "Partial-interaction design of composite beams", J. Struct. Eng., 8(53), 305-311.
  37. JSCE (2017), Standard Specifications for Steel and Composite Structures, Japan Society of Civil Engineers (JSCE); Tokyo, Japan
  38. Kozma, A., Odenbreita, C., Brauna, M.V., Veljkovicb, M. and Nijghb, M.P. (2019), "Push-out tests on demountable shear connectors of steel-concrete composite structures", Structures, 21, 45-54. https://doi.org/10.1016/j.istruc.2019.05.011
  39. Kwon, G., Engelhardt, M.D. and Klingner, R.E. (2010), "Behavior of post-installed shear connectors under static and fatigue loading", Steel Construction, 66(4), 532-541. https://doi.org/10.1016/j.jcsr.2009.09.012.
  40. Liu, X.P., Bradford, M.A. and Ataei, A. (2017), "Flexural performance of innovative sustainable composite steel-concrete beams", Eng. Struct., 130(1), 282-296. https://doi.org/10.1016/j.engstruct.2016.10.009.
  41. Liu, X.P., Bradford, M.A. and Lee, M.S.S. (2015), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Struct. Eng., 141(6), 4014149. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001090.
  42. Liu, X.P., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108, 54-56. https://doi.org/10.1016/j.finel.2015.09.004.
  43. Marshall, W.T., Nelson, H.M. and Banerjee, H.K. (1971), "An experimental study of the use of high strength friction-grip bolts as shear connectors in composite beams", Struct. Eng., 49(4), 171-178. http://worldcat.org/issn/14665123.
  44. Ollgaard, J., Slutter, R. and Fisher, J. (1971), "Shear strength of stub connectors in lightweight and normal-weight concrete", AISC Engineering Journal, 8(2), 55-66. https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp3378933.
  45. Pan, W.H., Fan, J.S., Nie, J.G., Hu, J.H. and Cui, J.F. (2016), "Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer", J. Bridge Eng., 21(10), 4016064. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000935.
  46. Pavlovic, M. and Veljkovic, M. (2017), "FE validation of push-out tests using bolts as shear connectors", Steel Construct., 10(2), 135-144. https://doi.org/10.1002/stco.201710017.
  47. Pavlovic, M., Markovic, Z., Veljkovic, M. and Bucfevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  48. Polus, L. (2021), An Analysis of Load Bearing Capacity and Stiffness of Aluminium-Concrete Composite Elements Subjected to Bending, Ph.D. Dissertation, Poznan University of Technology, Poznan.
  49. Polus, L. and Szumigala, M. (2019), "An experimental and numerical study of aluminium-concrete joints and composite beams", Arch. Civ. Mech., 19(2), 375-390. https://doi.org/10.1016/j.acme.2018.11.007.
  50. Qi, J.N., Wang, J.Q., Li, M. and Chen, L.L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079.
  51. Suwaed, A.S.H. and Karavasilis, T.L. (2017), "Novel demountable shear connector for accelerated disassembly, repair, or replacement of precast steel-concrete composite bridges", J. Bridge Eng., 22(9), 4017052. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001080.
  52. Szumigala, M., Chybinski, M. and Polus, L. (2021), "Composite beams with aluminium girders - a review", In: Gizejowski M.A. et al., editors. Modern Trends in Research on Steel, Aluminium and Composite Structures: Proceedings of the XIV International  Conference on Metal Structures (ICMS2021), Poznan, Poland, 16-18 June 2021. Routledge, Leiden, Netherlands, 249-255. https://doi.org/10.1201/9781003132134-30.
  53. Tang, Y.C., Zhu, M., Chen, Z., Wu, C.J., Chen, B., Li, C. and Li, L.J. (2022), "Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method", Structures, 37, 426-441. https://doi.org/10.1016/j.istruc.2021.12.055.
  54. Tong, L.W., Chen, L.H., Wen, M. and Xu, C. (2020), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218, 110827. https://doi.org/10.1016/j.engstruct.2020.110827.
  55. Wallaert, J.J. and Fisher, J.W. (1964), Shear Strength of High-Strength Bolts, Paper 1822, Fritz Laboratory Reports, Lehigh Univ., Bethlehem, P.A.
  56. Wang, J.Q., Xu, Q.Z., Yao, Y.M., Qi, J.N. and Xiu, H.L. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.
  57. Wang, J.Y., Guo, J.Y., Jia, L.J., Chen, S.M. and Dong, Y. (2017), "Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures", Compos. Struct., 170, 69-79. https://doi.org/10.1016/j.compstruct.2017.03.004.
  58. Xiong, Z., Mai, G.H., Qiao, S.H., He, S.H., Zhang, B.F., Wang, H.L., Zhou, K.T. and Li, L.J. (2022), "Fatigue bond behaviour between basalt fibre-reinforced polymer bars and seawater sea-sand concrete", Ocean Coast. Manage., 218, 106038. https://doi.org/10.1016/j.ocecoaman.2022.106038.
  59. Xu, C., Sugiura, K., Wu, C. and Su, Q.T. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Constr. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.
  60. Xue, D.Y., Liu, Y.Q., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", J. Constr. Steel Res., 74(8), 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017.
  61. Yang, F., Liu, Y.Q., Jiang, Z.B. and Xin, H.H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct., 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005.
  62. Yang, T., Liu, S.Y., Qin, B.X. and Liu, Y.Q. (2020), "Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams", J. Constr. Steel Res., 173, 106260. https://doi.org/10.1016/j.jcsr.2020.106260.
  63. Zhang, Y.J., Chen, B.C., Liu, A.R., Pi, Y.L., Zhang, J.P., Wang, Y. and Zhong, L.C. (2019), "Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam", Compos. Part B-Eng., 159, 481-489. https://doi.org/10.1016/j.compositesb.2018.10.007.
  64. Zhang, Y.J., Liu, A.R., Chen, B.C., Zhang, J.P., Pi, Y.L. and Bradford, M.A. (2020), "Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete", Eng. Struct., 215, 110707. https://doi.org/10.1016/j.engstruct.2020.110707.
  65. Zhu, J.S., Wang, Y.G., Yan, J.B. and Guo, X.Y. (2020), "Shear behaviour of steel-UHPC composite beams in waffle bridge deck", Compos. Struct., 234 111678. https://doi.org/10.1016/j.compstruct.2019.111678.