DOI QR코드

DOI QR Code

Investigation of expanding-folding absorbers with functionally graded thickness under axial loading and optimization of crushing parameters

  • Chunwei, Zhang (Multidisciplinary Centre for Infrastructure Engineering, Shenyang University of Technology) ;
  • Limeng, Zhu (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Farayi, Musharavati (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University) ;
  • Afrasyab, Khan (Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University) ;
  • Tamer A., Sebaey (Engineering Management Department, College of Engineering, Prince Sultan University)
  • 투고 : 2020.10.18
  • 심사 : 2021.07.16
  • 발행 : 2022.12.25

초록

In this study, a new type of energy absorbers with a functionally graded thickness is investigated, these type of absorbers absorb energy through expanding-folding processes. The expanding-folding absorbers are composed of two sections: a thin-walled aluminum matrix and a thin-walled steel mandrel. Previous studies have shown higher efficiency of the mentioned absorbers compared to the conventional ones. In this study, the effect of thickness which has been functionally-graded on the aluminum matrix (in which expansion occurs) was investigated. To this end, initial functions were considered for the matrix thickness, which was ascending/descending along the axis. The study was done experimentally and numerically. Comparing the experimental data with the numerical results showed high consistency between the numerical and experimental results. In the final section of this study, the best energy absorber functionally graded thickness was introduced by optimization using a third-order genetic algorithm. The optimization results showed that by choosing a minimum thickness of 1.6 mm and the exponential coefficient of 3.25, the most optimal condition can be obtained for descending thickness absorbers.

키워드

과제정보

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400), the Department of Science and Technology of Shandong Province (Grant No. 2021CXGC011204), and the State Key Laboratory of Precision Blasting of Jianghan University.

참고문헌

  1. Ahmad, Z. and Thambiratnam, D.P. (2009), "Crushing response of foam-filled conical tubes under quasi-static axial loading", Mater. Des., 30(7), 2393-2403. https://doi.org/10.1016/j.matdes.2008.10.017. 
  2. Akisanya, A.R. and Fleck, N.A. (2006), "Plastic collapse of thin-walled frusta and egg-box material under shear and normal loading", Int. J. Mech. Sci., 48(7), 799-808. https://doi.org/10.1016/j.ijmecsci.2006.01.020. 
  3. Alam, Z., Sun, L., Zhang, C. and Noroozinejad Farsangi, E. (2023), "Global performance of multi-story stiffness-eccentric RC structures subjected to progressive seismic excitations: Shaking table investigations", J. Build. Eng., 64(4), https://doi.org/10.1016/j.jobe.2022.105582. 
  4. Alavi Nia, A. and Chahardoli, S. (2016), "Optimizing the layout of nested three-tube structures in quasi-static axial collapse", ThinWall. Struct., 107, 169-181. https://doi.org/10.1016/j.tws.2016.06.010. 
  5. Alkhatib, S.E., Tarlochan, F. and Eyvazian, A. (2017), "Collapse behavior of thin-walled corrugated tapered tubes", Eng. Struct., 150, 674-692. https://doi.org/10.1016/j.engstruct.2017.07.081. 
  6. Almeida, B.P.P., Alves, M.L., Rosa, P.A.R., Brito, A.G. and Martins, P.A.F. (2006), "Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation", Int. J. Machine Tools Manufact., 46(12), 1643-1652. https://doi.org/10.1016/j.ijmachtools.2005.08.018. 
  7. Alves, M.L., Almeida, B.P.P., Rosa, P.A.R. and Martins, P.A.F. (2006), "End forming of thin-walled tubes", J. Mater. Process. Technol., 177(1), 183-187. https://doi.org/10.1016/j.jmatprotec.2006.04.040. 
  8. Asgari, A.B. and Jamshidi, M. (2018), "Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies", Steel Compos. Struct., 27(4), 427-438. http://dx.doi.org/10.12989/scs.2018.27.4.427. 
  9. ASM-International (1990), A.I.H. Committee, A.I.A.P.D. Committee, ASM Handbook, ASM International, ASM international Materials Park, OH 
  10. ASM-International (1990), Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, ASM International
  11. ASTME8/E8M-09 (2011), Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009, www.astm.org., ASTM 
  12. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. http://dx.doi.org/10.12989/scs.2019.31.2.133. 
  13. Baykasoglu, C., Baykasoglu, A. and Tunay Cetin, M. (2019), "A comparative study on crashworthiness of thin-walled tubes with functionally graded thickness under oblique impact loadings", Int. J. Crashworthiness. 24(4), 453-471. https://doi.org/10.1080/13588265.2018.1478775. 
  14. Borges, H., Martinez, G. and Graciano, C. (2016), "Impact response of expanded metal tubes: A numerical investigation", Thin-Wall. Struct., 105, 71-80. https://doi.org/10.1016/j.tws.2016.04.005. 
  15. Chahardoli, S. and Nia, A.A. (2017), "Investigation of mechanical behavior of energy absorbers in expansion and folding modes under axial quasi-static loading in both experimental and numerical methods", Thin-Wall. Struct., 120 319-332. https://doi.org/10.1016/j.tws.2017.09.013. 
  16. Chahardoli, S., Nia, A.A. and Asadi, M. (2019), "Parametric investigation of the mechanical behavior of expanding-folding absorbers and their implementation in sandwich panels core", Thin-Walled Structures. 137, 53-66. https://doi.org/10.1016/j.tws.2019.01.003. 
  17. Chen, Yong Zhuang, Hai Fang, Weiqing Liu, and, L.Z. and Fan, Z. (2019), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. http://dx.doi.org/10.12989/scs.2019.31.2.133. 
  18. Chen, Y., Bai, Z., Zhang, L., Wang, Y., Sun, G. and Cao, L. (2017), "Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles", Thin-Wall. Struct., 110, 133-139. https://doi.org/10.1016/j.tws.2016.11.001. 
  19. Choi, W.M., Kwon, T.S., Jung, H.S. and Kim, J.S. (2012), "Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion tube", Int. J. Crashworthiness. 17(6), 621-629. https://doi.org/10.1080/13588265.2012.704188. 
  20. Eyvazian, A., Habibi, M.K., Hamouda, A.M. and Hedayati, R. (2014), "Axial crushing behavior and energy absorption efficiency of corrugated tubes", Mater. Des., 54, 1028-1038. https://doi.org/10.1016/j.matdes.2013.09.031. 
  21. Gupta, N.K., Sheriff, N.M. and Velmurugan, R. (2006), "A study on buckling of thin conical frusta under axial loads", Thin-Wall. Struct., 44(9), 986-996. https://doi.org/10.1016/j.tws.2006.08.010. 
  22. Karrech, A. and Seibi, A. (2010), "Analytical model for the expansion of tubes under tension", J. Mater. Process. Technol., 210(2), 356-362. https://doi.org/10.1016/j.jmatprotec.2009.09.024. 
  23. Liu, Y. and Qiu, X. (2018), "A theoretical model of the shrinking metal tubes", Int. J. Mech. Sci., 144, 564-575. https://doi.org/10.1016/j.ijmecsci.2018.06.019. 
  24. Liu, Y., Qiu, X., Wang, W. and Yu, T.X. (2017), "An improved two-arcs deformational theoretical model of the expansion tubes", Int. J. Mech. Sci., 133, 240-250. https://doi.org/10.1016/j.ijmecsci.2017.08.036. 
  25. Mohammadiha, O. and Ghariblu, H. (2016), "Crush response of variable thickness distribution inversion tubes under oblique loading", Thin-Wall. Struct., 109, 159-173. https://doi.org/10.1016/j.tws.2016.09.018. 
  26. Mohammadiha, O. and Ghariblu, H. (2017), "Analytical study on functionally graded thickness tubes under external inversion process", Thin-Wall. Struct., 119, 820-827. https://doi.org/10.1016/j.tws.2017.08.002. 
  27. Mozafari, H., Eyvazian, A., Hamouda, A.M., Crupi, V., Epasto, G. and Gugliemino, E. (2018), "Numerical and experimental investigation of corrugated tubes under lateral compression", Int. J. Crashworthiness. 23(4), 461-473. https://doi.org/10.1080/13588265.2017.1345592. 
  28. Nia, A.A. and Chahardoli, S. (2016), "Mechanical behavior of nested multi-tubular structures under quasi-static axial load", Thin-Wall. Struct., 106, 376-389. https://doi.org/10.1016/j.tws.2016.05.012. 
  29. Niknejad, A. and Moeinifard, M. (2012), "Theoretical and experimental studies of the external inversion process in the circular metal tubes", Mater. Des., 40, 324-330. https://doi.org/10.1016/j.matdes.2012.04.005. 
  30. Shakeri, M., Salehghaffari, S. and Mirzaeifar, R. (2007), "Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation", Int. J. Crashworthiness. 12(5), 493-501. https://doi.org/10.1080/13588260701483540. 
  31. Song, J.F., Xu, S.C., Wang, H.X., Wu, X.Q. and Zou, M. (2018), "Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures", Thin-Wall. Struct., 125, 76-88. https://doi.org/10.1016/j.tws.2018.01.010. 
  32. Sun, G., Li, G., Gong, Z., Cui, X., Yang, X. and Li, Q. (2010), "Multiobjective robust optimization method for drawbead design in sheet metal forming", Mater. Des., 31(4), 1917-1929. https://doi.org/10.1016/j.matdes.2009.10.050. 
  33. Sun, G., Xu, F., Li, G. and Li, Q. (2014), "Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness", Int. J. Impact Eng., 64, 62-74. https://doi.org/10.1016/j.ijimpeng.2013.10.004. 
  34. Vinayagar, K. and Kumar, A.S. (2017), "Multi-response optimization of crashworthiness parameters of bi-tubular structures", Steel Compos. Struct., 23(1), 31-40. http://dx.doi.org/10.12989/scs.2017.23.1.031. 
  35. Xiang, X., Zou, S., Ha, N.S., Lu, G. and Kong, I. (2020), "Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing", Compos. Part B: Eng., 198, 108216. https://doi.org/10.1016/j.compositesb.2020.108216. 
  36. Xu, F. (2015), "Enhancing material efficiency of energy absorbers through graded thickness structures", Thin-Wall. Struct., 97, 250-265. https://doi.org/10.1016/j.tws.2015.09.020. 
  37. Xue, Q., Zhang, J., He, J. and Zhang, C. (2016), "Control performance and robustness of pounding tuned mass damper for vibration reduction in SDOF structure", Shock Vib., https://doi.org/10.1155/2016/8021690. 
  38. Xue, Q., Zhang, J., He, J., Zhang, C. and Zou, G. (2017), Seismic control performance for Pounding Tuned Massed Damper based on viscoelastic pounding force analytical method", J. Sound Vib., 411, 362-377, https://doi.org/10.1016/j.jsv.2017.08.035. 
  39. Yan, J., Yao, S., Xu, P., Peng, Y., Shao, H. and Zhao, S. (2016), "Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers", Int. J. Mech. Sci., 105, 206-214. https://doi.org/10.1016/j.ijmecsci.2015.11.022. 
  40. Yang, J., Luo, M., Hua, Y. and Lu, G. (2010), "Energy absorption of expansion tubes using a conical-cylindrical die: Experiments and numerical simulation", Int. J. Mech. Sci., 52(5), 716-725. https://doi.org/10.1016/j.ijmecsci.2009.11.015. 
  41. Yu, K., Liu, Y. and Zhang, Z. (2019), "Energy-absorbing analysis and reliability-based multiobjective optimization design of graded thickness B pillar with grey relational analysis", Thin-Wall. Struct., 145, 106364. https://doi.org/10.1016/j.tws.2019.106364. 
  42. Zhang, C. (2011), "Dynamic test and constitutive model of 225 mpa low yield point steel material and its energy absorption ability", Int. J. Protect. Struct., 2(4), 527-540, https://doi.org/10.1260/2041-4196.2.4.527. 
  43. Zhang, C., Gholipour, G. and Mousavi, A.A. (2021), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Archiv. Computa. Meth. Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5. 
  44. Zhang, C., Hao, H., Tarasov, B. and Zhu, X. (2012), "Some special phenomena and preliminary interpretations about measured strain signals from high speed impact tests", Int. J. Struct. Eng., 3(1), 48-60, https://doi.org/10.1504/IJSTRUCTE.2012.045043.