DOI QR코드

DOI QR Code

Target strength of Antarctic krill and ice krill using the SDWBA model

SDWBA 모델을 이용한 남극 크릴과 아이스 크릴의 반사강도 연구

  • Wuju, SON (Department of Polar Science, University of Science and Technology) ;
  • Hyoung Sul, LA (Division of Ocean Sciences, Korea Polar Research Institute) ;
  • Wooseok, OH (Division of Fisheries Science, Chonnam National University) ;
  • Jongmin, JOO (Emission Inventory Management Team, National Air Emission Inventory and Research Center)
  • 손우주 (한국과학기술연합대학교대학원 극지과학과) ;
  • 나형술 (한국해양과학기술원 극지연구소 해양연구본부) ;
  • 오우석 (전남대학교 수산과학과) ;
  • 주종민 (국가미세먼지정보센터 배출량조사팀)
  • Received : 2022.11.05
  • Accepted : 2022.11.29
  • Published : 2022.11.30

Abstract

We explored the frequency response of krill target strength (TS) to understand the Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using the stochastic distorted-wave Born approximation (SDWBA) model. The results showed that the distribution of orientation and the fatness factor could significantly impact on the frequency response of TS. Krill TS is clearly depended on acoustic properties, which could affect to estimate the biomass of two krill species. The results provide insight into the importance of understanding TS variation to estimate the Antarctic krill and ice krill biomass, and their ecology related to the environmental features in the Southern Ocean.

Keywords

Acknowledgement

이 연구는 해양수산부의 재원으로 해양수산과학기술진흥원의 지원을 받아 수행되었습니다(과제번호: KIMST 20220547).

References

  1. Calise L and Skaret G. 2011. Sensitivity investigation of the SDWBA Antarctic krill target strength model to fatness, material contrasts and orientation. CCAMLR Sci 18, 97-122. 
  2. Campbell RW and Dower JF. 2003. Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar. Ecol. Prog. Ser 263, 93-99. https://doi.org/10.3354/meps263093. 
  3. Choi SG, Lee HB, Lee KH and Lee JB. 2016. A study on calibration for commercial split beam echosounder using the bottom backscattering strength from a fishing vessel near the South Shetland Islands, Antarctica. J Korean Soc Fish Technol 52, 318-324. https://doi.org/10.3796/ksft.2016.52.4.318. 
  4. Chu D and Wiebe PH. 2005. Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters. ICES J Mar Sci 62, 818-831. https://doi.org/10.1016/j.icesjms.2004.12.020. 
  5. Conti SG and Demer DA. 2006. Improved parameterization of the SDWBA for estimating krill target strength. ICES J Mar Sci 63, 928-935. https://doi.org/10.1016/j.icesjms.2006.02.007. 
  6. Endo Y. 1993. Materials and Methods Krill samples were collected by KYMT (Kaiyo. Nippon Suisan Gakkaishi 59, 465-468. https://doi.org/10.2331/suisan.59.465. 
  7. Everson I. 2000. Introducing krill. Krill: Biology, Ecology and Fisheries 6, 1-7. 
  8. Foote KG. 1990. Speed of sound in Euphausia superba. J. Acoust. Soc. Am 87(4), 1405-1408. https://doi.org/10.1121/1.399436. 
  9. Foote KG, Everson I, Watkins JL and Bone DG. 1990. Target strengths of Antarctic krill (E uphausiasuperba) at 38 and 120 kHz. J Acoust Soc Am 87, 16-24. https://doi.org/10.1121/1.399282. 
  10. Forman KA and Warren JD. 2010. Variability in the density and sound-speed of coastal zooplankton and nekton. ICES J Mar Sci 67, 10-18. https://doi.org/10.1093/icesjms/fsp217. 
  11. Hewitt RP, Watkins J, Naganobu M et al. 2004. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Res Part II Top Stud Oceanogr 51 (12-13) SPEC.ISS.: 1215-1236. https://doi.org/10.1016/j.dsr2.2004.06.011. 
  12. Kang M, Furusawa M and Miyashita K. 2002. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES J Mar Sci 59, 94-804. https://doi.org/10.1006/jmsc.2002.1229. 
  13. Kils U. 1981. Swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. BIOMASS Sci Ser 3, 1-121. 
  14. Lawson GL, Wiebe PH, Ashjian CJ, Chu D and Stanton TK. 2006. Improved parametrization of Antarctic krill target strength models. J Acoust Soc Am 119, 232-242. https://doi.org/10.1121/1.2141229. 
  15. Lawson GL, Wiebe PH, Ashjian CJ and Stanton TK, 2008. Euphausiid distribution along the Western Antarctic Peninsula-Part B: Distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep Res Part II Top Stud Oceanogr 55, 432-454. https://doi.org/10.1016/j.dsr2.2007.11.014. 
  16. La HS, Lee H, Fielding S, Kang D, Ha HK, Atkinson A and Shin HC. 2015a. High density of ice krill (Euphausia crystallorophias) in the Amundsen sea coastal polynya, Antarctica. Deep Res Part I Oceanogr Res Pap 95, 75-84. https://doi.org/10.1016/j.dsr.2014.09.002. 
  17. La HS, Lee H, Kang D, Lee SH and Shin HC. 2015b. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias. Chinese J Oceanol Limnol 33, 802-808. https://doi.org/10.1007/s00343-015-4064-3. 
  18. Lee HB, Kang DB, Im YJ and Lee KH. 2014. Distribution and abundance of Japanese anchovy Engraulis japonicus and other fishes in Asan Bay, Korea, estimated hydroacoustic survey. Korean Journal of Fisheries and Aquatic Sciences 47, 671-681.  https://doi.org/10.5657/KFAS.2014.0671
  19. Lee HB, Choi SG, Lee KH, Lee JB, Lee JH and Choi JH. 2015. A study on noise removal technique for acoustic data from a fishing boat. J Korean Soc Fish Technol 51, 155-158. https://doi.org/10.3796/KSFT.2015.51.3.
  20. Pena M and Calise L. 2016. Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species. Deep Res Part I Oceanogr Res Pap 110, 50-64. https://doi.org/10.1016/j.dsr.2016.01.006. 
  21. Sala A, Azzali M and Russo A. 2002. Krill of the Ross Sea: Distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic expedition (January-February 2000). Sci Mar 66, 123-133. https://doi.org/10.3989/scimar.2002.66n2123. 
  22. SC-CAMLR. 2005. Report of the first meeting of the subgroup on acoustic survey and analysis method (SGASAM). In: report of the twenty-fourth meeting of the scientific committee (SC-CAMLRXXIV/BG/3), Annex 6. CCAMLR, Hobart, Australia: 564-585. 
  23. SC-CAMLR. 2010. Report of the fifth meeting of the subgroup on acoustic survey and analysis methods. In: report of the twenty-ninth meeting of the scientific committee (sc-camlrxXIX), Annex 5. CCAMLR, Hobart, Australia: 147-171. 
  24. Stanton TK and Chu D. 2000. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: Euphausiids and copepods. ICES J Mar Sci 57, 793-807. https://doi.org/10.1006/jmsc.1999.0517.