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ABSTRACT. Timer options are one of the contingent claims that, for given the variance budget,
its payoff depends on a random maturity in terms of the realized variance unlike the standard
European vanilla option with a fixed time maturity. Since it was first launched by Société
Générale Corporate and Investment Banking in 2007, the valuation of the timer options under
several stochastic environment for the volatility has been conducted by many researches. In
this study, we propose the pricing of timer power options combined with standard timer options
and the index of the power to the underlying asset for the investors to actualize lower risks and
higher returns at the same time under the uncertain markets. By using the asymptotic analysis,
we obtain the first-order approximation of timer power options. Moreover, we demonstrate that
our solution has been derived accurately by comparing it with the solution from the Monte-
Carlo method. Finally, we analyze the impact of the stochastic volatility with regards to various
parameters on the timer power options numerically.

1. INTRODUCTION

As financial markets have been growing and developing, the financial institutions and investors
as well as the market speculators have been more interested in realizing higher profits un-
der the risk of the unpredictable market such as the global financial crisis from the U.S., the
COVID–19 pandemic and the Russia–Ukraine conflict. Hence, it enables many researchers
to pay attention to the economical market modelling to predict the price behavior of diverse
derivatives in the financial market. For example, since the dynamics of the risky asset price,
called by geometric Brownian motion(GBM) has been proposed by Black-Scholes [1], stochas-
tic volatility(SV) models have been introduced and developed by many researchers, capturing
and reflecting the empirical evidence observed in the financial market (see Hull and White [2],
Heston [3], Fouque et al. [4]). Overcoming the disadvantages of Black-Scholes model and
verifying that the implied volatility of equity options exhibits a smile or skew phenomenon,
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the stochastic volatility (SV) models have become helpful for the pricing and hedging of the
derivative pricing for many years as the existence of a nonflat implied volatility surface has
become more noticeable. However, in the real market, the risk premium which arises from the
price uncertainty of the underlying asset enables the level of implied volatility to tend to get
greater than the realized volatility, showing a higher implied volatility in the financial securities
hints that the option would be overvalued.

In this regard, in April 2007, Société Générale Corporate and Investment Banking (SG CIB)
has first launched one of innovative financial derivatives, called as the ”timer options” that
have a random maturity relying on the realized variance under the variance budget. A timer
option is a new form of financial securities which enables investors to determine the volatility
level to exercise their option with a random maturity in contrast with a standard European
vanilla option. According to Li [5] and Sawyer [6], if the volatility is high, the timer options
are exercised at an early stage. Meanwhile, it takes longer time for the timer options to reach its
maturity if the volatility is low. Based on this situation, if the sudden changes in the financial
market, such as the global financial crisis in 2007-2008, take place, then leads to the drastic
changes of the volatility directly, followed by the results that, in case of the timer put option,
it makes the option get exercised rapidly. It implies that the portfolio managers can hedge the
unexpected risks more easily and effectively. In addition, referring to Bernard and Cui [7], the
contract for timer options can serve as hedging or replication techniques for the variance swap
or the volatility swaps. Recently, lots of studies concerning the pricing of the timer options
have been conducted by many researchers. For example, Carr and Lee [8] found the robust
model-free hedges and price bound options on the realized variance of an underlying asset
price including the timer style options. Bernard and Cui [7] first found how the problems of
the timer options under the stochastic volatility are resolved and the analytic pricing formula
is derived by an efficient almost exact Monte Carlo approach. Zheng and Zeng [9] analyzed
the pricing formula for the timer options under the 3/2 model by utilizing a closed-form partial
transform. Morevoer, Li [5] presented the joint probability density function for the first-passage
time that the realized variance reaches the variance budget at the first time to find the analytic
pricing formula of the timer options under the Heston model.

Power options are one of the options in which the underlying asset price in the payoff func-
tion depends on an index of a positive integer to the underlying asset price process at the expiry
date. According to Zhang et al. [10], the type of option can provide the flexibility and a substan-
tial amount of leverage to investors compared with the standard European vanilla options. So,
the derivatives attract much more attention in both financial engineering and economic fields
as shown in [11]. For example, as Bankers Trust in Germany has issued the power options with
a power of order 2, the power options have widely been studied in academia. Macovschi [12]
considered the power options under the Heston stochastic volatility model and a pure jump
Levy model. Kim et al. [13] found the semi-analytic pricing formula of the power options
under the Heston model and presented numerical methods for deriving the value of power put
options and capped power call options. Zhang et al. [10] investigated the price of the power
options under the assumption that the underlying stock price follows an uncertain differential
equation contrary to the Black-Scholes setting, and obtain the analytic solutions for the price of
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power options for Liu’s uncertain stock model with the techniques of uncertain calculus based
upon uncertainty theory.

In this study, combining the index to the underlying asset of the standard power options
mentioned above into the timer options, we propose timer power options (TPO) under the
general stochastic volatility (SV).

Recently, SV models have widely been employed in the diverse problems of the option
valuation since they have overcome a shortcoming of the existing Black-Scholes model and
reflected the empirical evidences in the real financial market. In fact, as demonstrated in Choi
et al. [14], it is well known that the assumption of constant volatility would not capture an
exogenous stochastic phenomenon since the global financial crisis in 2007-2008. Furthermore,
the flat implied volatility of the Black–Scholes model has a difficulty capturing the volatility
smile or skewness, which may be observed in the real finance market. So, in this case, from the
empirical results that the volatility of the underlying asset price is a stochastic process, it has
become possible to describe the market dynamics more effectively and accurately. Fouque et
al. [4] has studied the several types of options under the SV model incorporated by a fast mean-
reverting process. Since then, there have been a lot of researches for the financial derivatives
based on the SV model. For example, Wong and Chan [15] took account of the pricing of
looback options or dynamic fund protections under a multiscale SV model. Chiarella et al.
[16] dealt with the pricing problem of barrier options when the volatility of the underlying
asset price is driven by the Heston model. Recently, Kim et al. [17] applied the SV model to
external barrier options and then obtained the analytic pricing formula by using the method of
the asymptotic analysis.

The main contributions of this paper are as follows: Firstly, we construct the market dy-
namics for the TPOs and derive the partial differential equations(PDEs) for the price of TPOs.
Secondly, we obtain the approximation solutions for the given PDE by using asymptotic anal-
ysis, which is very helpful for us to deal with the TPO prices. Thirdly, we verify the pricing
accuracy of the derived approximated solutions through the Monte-Carlo simulation. Finally,
we provide the numerical implications of TPO prices and investigate some economical mean-
ings in terms of several model parameters.

This paper is organized as follows. In Section 2, we provide the market model for the TPOs
and derive the partial differential equations(PDEs) for the price of TPOs. In Section 3, we
obtain the first-order approximation solution for the option price of the TPOs by using the
asymptotic analysis. In Section 4, we verify the accuracy of our pricing formula for the TPOs
through Monte-Carlo method and also present the numerical implications against some model
parameters. Finally, Section 5 provides the concluding remarks.

2. MODEL FORMULATION

In this section, we present a mathematical model to deal with timer power option pricing. First,
we consider the probability space (Ω,F ,P). Here, Ω is a set of outcomes, F is a σ−field of
subsets of Ω, and P is a physical probability measure on (Ω,F). Now, assume that Xt is the
price of the underlying asset at time t, and Yt is the Ornstein-Uhlenbeck process driving the
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SV embedded in the volatility of the underlying asset. Then, under the measure P, the model
dynamics of Xt and Yt are given by the following stochastic differential equations:

dXt = µXtdt+ f(Yt)XtdW
1
t , dYt = α(m− Yt)dt+ βdW 2

t , (2.1)

where µ is a constant mean return rate of Xt, f is smooth function such that 0 < c1 ≤ f ≤
c2 <∞ for some constants c1 and c2, f(Yt) is denoted by the SV of the underlying asset value
Xt and α and β are positive constants. Furthermore, W 1

t and W 2
t are the standard Brownian

motions under the measure P with correlation structue d
〈
W 1,W 2

〉
t
= ρdt such that |ρ| ≤ 1.

In the real financial market, it can be observed that the volatility of stock prices has a ten-
dency to turn back to the specific mean, as described in Fouque et al. [4]. Also, from the
empirical studies based on Standard and Poor’s 500 index data, the fluctuation size of the
volatility looks like one from a fast mean-reverting stochastic process throughout the lifetime
of financial contracts. In this regard, based on the above empirical results, we assume that the
SV of Xt is a fast mean-reverting process whose the characteristic time to return to the mean
level of its long-run distribution is given by the parameter α and its invariant distribution is
normal with N (m,u2), where u = β/

√
2α and the parameter u is the variance of the invariant

distribution of Yt. In addition, the probability density function of the invariant distribution of
Yt is described by 1√

2πu2
exp

(
− (y−m)2

2u2

)
. Moreover, the parameter α is called as the rate of

the mean reversion. If α is sufficiently large, the process Yt in (2.1) revert to the long-run mean
level m regardless of the time, and the volatility tends to get closer to f(m) asymptotically.

By utilizing the Girsanov theorem, under an equivalent martingale measure P̃, the model
dynamics (2.1) can be transformed into

dXt = rXtdt+ f(Yt)XtdW̃
1
t ,

dYt =

(
1

ϵ
(m− Yt)−

u
√
2√
ϵ
Λ(Yt)

)
dt+

u
√
2√
ϵ
dW̃ 2

t ,

where r is a risk-free interest rate, ϵ is the rate of the mean reversion with 0 < ϵ ≪ 1, m is
the long-run mean level, u(∼ O(1)) is the standard deviation of the ergodic process Yt and
W̃ 1

t and W̃ 2
t are the transformed standard Brownian motions satisfying d

〈
W̃ 1, W̃ 2

〉
t
= ρdt.

Here, Λ is the market price of volatility risk.
Unlike the standard European vanilla options, the investors of the timer style options specify

the variance budget V(> 0) considering the accumulated realized variance to exercise the
option. The random maturity is determined by the first time passage τV, such that τV is given
by

τV := inf {t > 0 : Vt = V} , (2.2)

where a continuous-time version of the cumulative realized variance process Vt is defined by
Vt :=

∫ t
0 f

2(Ys)ds. It implies that the stopping occurs when the process Vt first hits the given
variance budget V. Timer options can be regarded as a European call option with SV depending
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on the random maturity under the fixed variance budget instead of considering only the time to
maturity as the expirtation date.

Now, we present the payoff function of the timer power options (TPOs) combined with
standard timer options and the index of the power to the underlying asset as follows:

h(XτV) = (Xc
τV −K)+, (2.3)

where K is the predetermined strike price and c ∈ N is a constant index of the power. Then,
under the risk-neutral measure P̃, the no-arbitrage price of TPOs with payoff function (2.3) at
a random maturity (2.2) is described by

P (t ∧ τV, x, y, v) = Ẽ
[
e−r(τV−t∧τV)h(XτV)

∣∣∣∣Xt∧τV = x, Yt∧τV = y, Vt∧τV = v

]
= Ẽ

[
e−rτV−v(Xc

τV−v
−K)+ | X0 = x, Y0 = y

]
.

(2.4)

Next, by applying the well–known Feynman–Kac theorem to the expectation form (2.4) and
using the property that the price of a timer style option is independent of time variable t (as
shown in Li [5]), we have the following time–invariant PDE:(

1

ϵ
L0 +

1√
ϵ
L1 + L2

)
P (x, y, v) = 0, v < V

P (x, y,V) = (xc −K)+,

(2.5)

where

L0 := (m− y)
∂

∂y
+ u2

∂2

∂y2
,

L1 :=− u
√
2Λ(y)

∂

∂y
+ u

√
2ρf(y)x

∂2

∂x∂y
,

L2 := r

(
x
∂

∂x
− I

)
+ f2(y)

∂

∂v
+

1

2
f2(y)x2

∂2

∂x2
.

Here, I is the identity operator.

3. ASYMPTOTIC ANALYSIS

In this section, we derive an approximate option price by using the asymptotic analysis, as
described by Fouque et al. [4]. First, we asymptotically expand P in terms of the small
parameter

√
ϵ as follows:

P (x, y, v) =

∞∑
n=0

ϵ
n
2 Pn(x, y, v) for 0 < ϵ≪ 1, (3.1)

where P0, P1, · · · are functions such that P0(x, y,V) = (xc − K)+ and Pi(x, y,V) = 0 if
i ≥ 1. Here, we are mainly focused on the first two terms P0 +

√
ϵP1. Next, by substituting
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(3.1) into (2.5), we have

1

ϵ
L0P0 +

1√
ϵ
(L0P1 + L1P0) + (L0P2 + L1P1 + L2P0) +

√
ϵ(L0P3 + L1P2 + L2P1) = O(ϵ),

which is satisfied for any ϵ > 0. Then, we can deduce a hierarchy of differential equations as
follows:

L0P0 = 0,

L0P1 + L1P0 = 0,

L0P2 + L1P1 + L2P0 = 0,

L0P3 + L1P2 + L2P1 = 0,

· · · .

(3.2)

Now, we present the growth condition and the centering condition (or solvability condition),
which play an important role in the procedure of this section.

Lemma 3.1. (Growth condition) If P0 and P1 do not grow as much as ∂P0
∂y ∼ e

y2

2 and ∂P1
∂y ∼

e
y2

2 as y → ∞, then P0(x, y, v) and P1(x, y, v) are independent of unobservable variable y.

Proof. This proof is similar to that of Lemma 3.1 in Kim et al. [17]. From the ordinary
differential equation L0P0 = 0 presented in (3.2), we obtain

P0(x, y, v) = K1(x, v)

∫ y

0
e

(m−γ)2

2u2 dγ +K2(x, v)

for some functions K1(x, v) and K2(x, v), which are independent of y. Then, using the as-
sumption of the growth condition on P0, K1(x, v) = 0 holds, and then we have P0 = P0(x, v),
which does not depend on y. Next, the second equation L0P1 + L1P0 = 0 in (3.2) leads to
L0P1 = 0. Similar to the above case of L0P0 = 0, by using the growth condition, therefore,
P1 = P1(x, v) is independent of y. This completes the proof.

□

Lemma 3.2. (Centering condition) If we consider the equation L0χ(y) + g(y) = 0, which
is the Poisson equation for χ, with a solution, then the centering condition ⟨g⟩ = 0 must be
satisfied. Here, ⟨·⟩ is denoted by an expectation under the invariant distribution N (m,u2) of
Y , represented by ⟨g⟩ = 1√

2πu

∫∞
−∞ g(y) exp

(
− (y−m)2

2u2

)
dy for any function g.

Proof. Refer to Fouque et al. [4]. □

Theorem 3.1. Under the growth condition on P0 presented in Lemma 3.1, the leading-order
term P0 satisfies the following homogeneous problem:

LTBS(σ̃f )P0(x, v) = 0, v < V,
P0(x,V) = (xc −K)+,

(3.3)
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where σ̃f :=
√
⟨f2⟩ is the effective volatility and

LTBS(σ̃f ) := r

(
x
∂

∂x
− I

)
+ σ̃2f

∂

∂v
+
σ̃2f
2
x2

∂2

∂x2
.

Proof. If we define σ̃f =
√
⟨f2⟩ as the effective volatility, then the expected differential oper-

ator ⟨L2⟩ := LTBS(σ̃f ) is expressed by LTBS(σ̃f ) = r
(
x ∂
∂x − ·

)
+ σ̃2f

∂
∂v +

σ̃2
f

2 x
2 ∂2

∂x2 . Now,
based on the growth condition and the centering condition given by Lemma 3.1 and Lemma
3.2, respectively, the Poisson equation for P2 in (3.2) yields ⟨L2P0⟩ = ⟨L2⟩P0 = 0 because
the leading order term P0 does not depend on y. Therefore, we obtain a homogeneous PDE
LTBS(σ̃f )P0 = 0 for v < V and the boundary condition P0(x,V) = (xc −K)+. □

Theorem 3.2. Under the growth condition on P1 given in Lemma 3.1, the correction order
term P1(x, v) satisfies the following non-homogeneous problem:

LTBS(σ̃f )P1(x, v) = H, v < V,
P1(x,V) = 0,

(3.4)

where H := −u
√
2 ⟨Λψ′⟩

(
∂vP0 +

x2

2 ∂xxP0

)
+u

√
2ρ ⟨fψ′⟩

(
x∂xvP0 + x2∂xxP0 +

x3

2 ∂xxxP0

)
and ψ(y) solves the Poisson equation L0ψ(y) = f2(y)− σ̃2f .

Proof. From the ⟨L2P0⟩ = 0, we have

L2P0 = L2P0 − ⟨L2P0⟩

= (f2(y)− σ̃2f )
∂P0

∂v
+

1

2

(
f2(y)− σ̃2f

)
x2
∂2P0

∂x2
.

Now, by utilizing the centering condition of the Poisson equation for P2, P2 becomes

P2 = −L−1
0 (L2P0)

= −L−1
0

[
(f2(y)− σ̃2f )

∂P0

∂v
+

1

2

(
f2(y)− σ̃2f

)
x2
∂2P0

∂x2

]
= −(ψ + k)

∂P0

∂v
− 1

2
(ψ + k)x2

∂2P0

∂x2
,

where k is the variable independent of y and ψ is a solution of the Poisson equation L0ψ(y) =
f2(y) − σ̃2f . Next, let us consider a Poisson equation for P3, represented by L0P3 + L1P2 +

L2P1 = 0 and by using the centering condition for P3, we obtain ⟨L1P2 + L2P1⟩ = 0, which
leads to

⟨L2⟩P1 = −⟨L1P2⟩

= ⟨L1ψ⟩
∂P0

∂v
+

1

2
⟨L1ψ⟩x2

∂2P0

∂x2
.
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Here, ⟨L1ψ⟩ can be computed by

⟨L1ψ⟩ = −u
√
2
〈
Λψ′〉+ u

√
2ρ
〈
fψ′〉x ∂

∂x
,

and then, the correction order term P1(x, v) satisfies

LTBS(σ̃f )P1(x, v) = −u
√
2
〈
Λψ′〉(∂vP0 +

x2

2
∂xxP0

)
+ u

√
2ρ
〈
fψ′〉(x∂xvP0 + x2∂xxP0 +

x3

2
∂xxxP0

)
:= H

with the boundary condition P1(x,V) = 0. This completes the proof. □

Next, we obtain the explicit form solution of the leading-order price P0 and the correction
order price P1.

Lemma 3.3. The leading order term P0(x, v) is a solution of PDE problem (3.3) in Theorem
3.1 and is expressed by

P0(x, v) = xce

(
(c−1)

(
r+

cσ̃2
f

2

)
V−v

σ̃2
f

)
N (d1(x, v))−Ke

−r V−v

σ̃2
f N (d2(x, v)), (3.5)

where

d1(x, v) =
ln
(
xc

K

)
+ c

(
r + (c− 1

2)σ̃
2
f

)
V−v
σ̃2
f

c
√
V− v

, d2(x, v) = d1(x, v)− c
√
V− v,

N (z) =
1√
2π

∫ z

−∞
e−

η2

2 dη.

Proof. If we define the state variable ω as ω := V−v
σ̃2
f

, by the chain rule, the first-order derivative

of P0 with respect to ω is ∂P0
∂v = 1

σ̃2
f

∂P0
∂ω . Next, if we apply the relationship to the homogeneous

PDE (3.3), we have

r

(
x
∂P0

∂x
(x, ω)− P0(x, ω)

)
+
∂P0

∂ξ
(x, ω) +

σ̃2f
2
x2
∂2P0

∂x2
(x, ω) = 0, v < V (3.6)

with P0(x,V) = (xc −K)+. Interestingly, since the variable ω functions as a time variable,
equation (3.6) is equivalent to the Black–Scholes PDE with the power index. According to
Ibrahim [18], the closed–form price of the power call option, denoted by PPO(x, t), is ex-
pressed by

PPO(x, t) = xce(c−1)(r+ cσ2

2
)(T−t)N (d1(x, t))−Ke−r(T−t)N (d2(x, t)),

d1(x, t) =
ln
(
xc

K

)
+ c

(
r + (c− 1

2)σ
2
)
(T − t)

c
√
T − t

, d2(x, t) = d1(x, t)− c
√
T − t.
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by replacing the time to maturity (T − t) and the constant volatility σ with ω and σ̃2f , respec-
tively, P0 is changed by

P0(x, ω) = xce
(c−1)

(
r+

cσ̃2
f

2

)
ω

N (d1(x, ω))−Ke−rωN (d2(x, ω)),

and from the definition of ω (= V−v
σ̃2
f
) mentioned above, we obtain the desired results in (3.5).

□

Lemma 3.4. The correction term P1(x, v), which is a solution of PDE problem (3.4), is ex-
pressed by

P1(x, v) = −V− v

σ̃2f
H (3.7)

Proof. Let us define A1 = −u
√
2 ⟨Λψ′⟩ and A2 = uρ

√
2 ⟨fψ′⟩. The the non-homogeneous

source term H presented in Theorem 3.2 is rewritten by

H = A1

(
∂vP0 +

x2

2
∂xxP0

)
+A2

(
x∂xvP0 + x2∂xxP0 +

x3

2
∂xxxP0

)
Now, to obtain the solution of PDE in (3.4), we first compute LTBSH as follows:

LTBSH =A1

[
LTBS

(
∂P0

∂v

)
+ LTBS

(
x2

2

∂2P0

∂x2

)]
+A2

[
LTBS

(
x
∂2P0

∂x∂v

)
+ LTBS

(
x2
∂2P0

∂x2

)
+ LTBS

(
x3

2

∂3P0

∂x3

)]
.

Then, by using the commuting property mentioned in Fouque et al. [4], in (3.5), LTBSH = 0
holds. Next, the relation

LTBS

(
−V− v

σ̃2f
H

)
= rx

(
−V− v

σ̃2f

)
∂H
∂x

+H− (V− v)
∂H
∂v

− (V− v)
x2

2

∂2H
∂x2

− r

(
−V− v

σ̃2f
H

)

=H− V− v

σ̃2f
LTBSH

=H (by using LTBSH = 0)

is satisfied. Therefore, −V−v
σ̂2 H is a solution of the PDE (3.4), and then the correction term

P1(x, v) is expressed by

P1(x, v) = −V− v

σ̃2f
H.

□
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Now, if we unite the findings of leading-order term in (3.5) and the correction order term in
(3.7), then we derive the first–order approximation of TPO P , denoted by P̃ ϵ, represented by

P̃ ϵ := P0 +
√
ϵP1. (3.8)

The proof of the accuracy approximation price given in (3.10) is given by Fouque et al. [4]. If
the payoff function h is continuously differentiable, then the pricing accuracy of the first-order
approximation is described by ∣∣P − (P0 +

√
ϵP1)

∣∣ ≤ O(ϵ).

Furthermore, if the payoff function h is not continuously differentiable at the strike price, i.e.,
h is not a smooth function, we can verify the error estimation by the regularization procedure,
which has to take account of the pointwise accuracy of the approximated option price due to
fact that the payoff function has an angle at the strike price (cf. Fouque et al. [4]). By using
the payoff regularization, we can extend the accuracy of the first-order approximated price
given in (3.8) by replacing the maturity T by T − z. Then, the error estimate of the first–order
approximation in (3.8) is expressed by∣∣P − (P0 +

√
ϵP1)

∣∣ ≤ O(ϵ ln ϵ).

In next section, we provide a numerical experiments of the price approximation through the
Monte–Carlo simulation instead of providing the detailed proof of it theoretically (Refer to
Table 1 in Section 4).

4. IMPLICATIONS

In this section, we numerically demonstrate the accuracy of the pricing formula of TPO by
comparing the analytic–closed form solution from the asymptotic analysis with the solution
obtained from the Monte–Carlo simulation. In addition, we analyze the price behaviors of the
TPO with regard to several parameters.

In Table 1, we present the values of the Monte-Carlo price PMC and the TPO P̃ ϵ to in-
vestigate the pricing accuracy of our approximation solution P̃ ϵ. Referring to Saunders [19],
Bernard and Cui [7] and Kim et al. [17], the selected parameters for the Monte–Carlo simula-
tion are expressed by

X0 = 1, V0 = 1,K = 0.7,V = 0.02, v = 0.01, σ̂ = 0.1, u =
√
2, c = 2, r = 0.01,

ρ = 0.2, ⟨Λψ′⟩ = −0.006, ⟨fψ′⟩ = 0.003,m = log(0.1).

Monte–Carlo simulation is conducted by 50,000 paths and all the computations are performed
in an Apple M1 and 8 GB memory. In the table, we can notice that the difference between the
Monte-Carlo price PMC and the TPO price P̃ ϵ, expressed by |PMC − P̃ ϵ|, goes to zero as the

parameter ϵ decreases. Next, RE [%] = |PMC−P̃ ϵ|
PMC

×100 refers to a percentage of a relative error

between the Monte–Carlo price PMC and the TPO price P̃ ϵ. Then, the values of RE approaches
to zero rapidly if the parameter ϵ gets smaller. It implies that the approximated TPO prices
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TABLE 1. The error comparison between the Monte–Carlo price (PMC) and
the VTO price (P̃ ϵ) with respect to ϵ. Referring to Saunders [19], Bernard and
Cui [7]. and Kim et al [17], we used parameters as follows: X0 = 1, V0 =
1,K = 0.7,V = 0.02, v = 0.01, σ̂ = 0.1, u =

√
2, c = 2, r = 0.01, ρ =

0.2, ⟨Λψ′⟩ = −0.006, ⟨fψ′⟩ = 0.003, and m = log(0.1).

ϵ PMC P̃ ϵ |PMC − P̃ ϵ| RE [%]

0.1 0.358419 0.335476 0.022943 6.401164

0.07 0.341780 0.334396 0.007384 2.160512

0.03 0.336031 0.332485 0.003545 1.055088

0.007 0.332248 0.330613 0.001634 0.491943

0.003 0.331218 0.330009 0.001209 0.364966

comes close to the Monte–Carlo price, which may be considered as the good approximation of
real solution, and then our solution is derived accurately.
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(b) Correction term of TPO with x = 1

FIGURE 1. The impact of index c on the correction term of timer power option
(TPO). The used parameters are as follows: r = 0.01, u = 0.1, ⟨Λψ′⟩ =
0.006, ⟨fψ′⟩ = 0.003, ρ = −0.3, K = 0.5, V = 0.0265, σ̂ = 0.1, ϵ = 0.003

Figure 1 describes the effect of the index c for the underlying asset price or the realized
variance on the correction term of TPO. Figure 1(a) displays the influence of the power c on
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the correction term with respect to the underlying asset price. It can be seen that the sensitivity
of the correction term becomes significant as the power value c increases, displaying a bigger
hump phenomenon. Next, Figure 1(b) presents the influence of the power c on the correction
term with respect to the state variable v. In the figure, if c gets larger, the curve of the correction
term tends to be an increasing function and be more sensitive. Also, as the state variable v
approaches the predetermined variance budget V, the price of the corrections term converges
to zero regardless of the choice of c. Therefore, from the both of figures, it can be observed
that the index c in the payoff (2.3) is regarded as a very significant parameter and the impact of
the parameter on the TPO is very crucial.
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(b) Correction term of TPO with x = 1

FIGURE 2. Correction terms for TPO in terms of the underlying asset price
and state variable for different variance budgets. The selected parameters are
given by r = 0.01, u = 0.1, ⟨Λψ′⟩ = 0.006, ⟨fψ′⟩ = 0.003, ρ = −0.3,
K = 0.5, σ̂ = 0.1, c = 3, and ϵ = 0.003

Figure 2 exhibits the behavior of the correction terms for TPO in terms of the underlying
asset price or state variable for given different variance budgets. In Figure 2(a), the sensitivity
of the correction price becomes larger as the variance budget gets bigger in the region of ITM
(In-The-Money) region. Here, the variance budget in the timer-options functions like the ma-
turity in European vanllia option. The larger variance budget, the greater the effect of SV in
the domain of ITM, and therefore it implied that, for the area of ITM, the influence of SV for
TPO is more significant as the variance budget is on the rise. In addition, in Figure 2(a), one
can see that the hump phenomenon has a tendency to happen in the region of ITM, showing
the larger the variance budget V, the bigger the width of the hump. Next, Figure 2(b) shows
that the graph of the correction term price is more sensitive to the state variable v for greater
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variance budget V, and the price change is almost zero as the state variable gets close to the
variance budget.
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FIGURE 3. (a) Pricing impacts of PO and TPO; (b) Pricing differences of
PO and TPO. The selected parameters are as follows: r = 0.01, u = 0.1,
⟨Λψ′⟩ = 0.006, ⟨fψ′⟩ = 0.003, ρ = −0.3, K = 0.5, V = 0.0625, σ̂ = 0.1,
c = 3, and ϵ = 0.003.

Figure 3 exhibits the price change for the TPO with respect to the underlying asset price,
comparing it with that of the standard European power option (PO) given by Ibrahim [18].
In Figure 3(a), we investigate the price difference between the PO and the TPO against the
underlying asset price. In the figure, the PO and the TPO prices increase as the underlying
asset price grows, and the value of the TPO tends to be less than that of PO. It implies that
the price of TPO may be underpriced compared with the price of PO, especially, in the ITM
region, verifying the results of Sawyer [6]. Moreover, in Figure 3(b), we provide the price gap
between the PO and the TPO graphically. The figure suggests that the difference of two value
has a tendency to get largers rapidly as the underlying asset price increases.

5. CONCLUSION

In this study, we obtain the fair price of timer power options (TPO) under a generalized sto-
chastic volatility (SV). The TPO is a kind of derivatives considering the index of the power to
the underlying asset on the standard timer option, and it allows the investors to obtain the stable
profit under the fluctuations of the sudden and unexpected market, such as the global financial
crisis and the COVID–19 pandemic. We derive the first-order approximation for the TPO by
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using the asymptotic analysis, and verify that our derived solution is accurately found by com-
paring it with Monte–Carlo price. Finally, we investigate the impact of the SV against various
model parameters, including the value of the power to the underlying asset, on the TPO.
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