DOI QR코드

DOI QR Code

PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase

  • 김현지 (부경대학교 화학공학과) ;
  • 박종하 (부경대학교 화학공학과) ;
  • 박애란 (부경대학교 화학공학과) ;
  • 이대희 (강릉원주대학교 해양식품공학과) ;
  • 전준호 (부경대학교 소방공학과) ;
  • 권혁택 (부경대학교 화학공학과) ;
  • 임성인 (부경대학교 화학공학과)
  • Hyunji, Kim (Pukyong National University/Department of Chemical Engineering) ;
  • Jong-Ha, Park (Pukyong National University/Department of Chemical Engineering) ;
  • Ae-Ran, Park (Pukyong National University/Department of Chemical Engineering) ;
  • Dae-Hee, Lee (Gangneung-Wonju National University/Department of Marine Food Science and Technology) ;
  • Joonho, Jeon (Pukyong National University/Department of Fire Protection Engineering) ;
  • Hyuk Taek, Kwon (Pukyong National University/Department of Chemical Engineering) ;
  • Sung In, Lim (Pukyong National University/Department of Chemical Engineering)
  • 투고 : 2022.11.27
  • 심사 : 2022.12.23
  • 발행 : 2022.12.30

초록

The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.

키워드

과제정보

이 연구는 2022년 부경대학교 국립대학육성사업지원비와 2020년도 강릉원주대학교 학술연구조성비 지원에 의하여 수행되었음.

참고문헌

  1. Industry Research. 2019. https://www.industryresearch.biz/global-polyethylene-terephthalate-pet-market-13877644 
  2. Bartolome L, Imran M, Cho BG, Al-Masry WA, Kim DH. 2012. Recent developments in the chemical recycling of PET. Material recycling-trends and perspectives 406:576-596. 
  3. Chatterjee S, Kumari S, Rath S, Das S. 2022. Chapter 1 - Prospects and scope of microbial bioremediation for the restoration of the contaminated sites. In: Das S, Dash HR, editors. Microbial Biodegradation and Bioremediation (Second Edition): Elsevier. p. 3-31. 
  4. Cressey D. 2016. Bottles, bags, ropes and toothbrushes: the struggle to track ocean plastics. Nature 536:263-265.  https://doi.org/10.1038/536263a
  5. Crippa M, Morico B. 2020. PET depolymerization: a novel process for plastic waste chemical recycling. In. Studies in Surface Science and Catalysis: Elsevier. p. 215-229. 
  6. Dong X, Ji J, Zhang S, Peng D, Wang Y, Zhang L, Li J, Wang G. 2022. Study on a Low-temperature Cellulose-degrading Strain: Fermentation Optimization, Straw Degradation, and the Effect of Fermentation Broth on Seed Growth. Biotechnology and Bioprocess Engineering 27:652-667.  https://doi.org/10.1007/s12257-021-0265-0
  7. Earhart CF. 2000. Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods Enzymol 326. 
  8. Fasehee H, Rostami A, Ramezani F, Ahmadian G. 2018. Engineering E. coli cell surface in order to develop a one-step purification method for recombinant proteins. AMB Express 8:107.  https://doi.org/10.1186/s13568-018-0638-8
  9. Iniguez ME, Conesa JA, Fullana A. 2016. Marine debris occurrence and treatment: A review. Renewable and Sustainable Energy Reviews 64:394-402.  https://doi.org/10.1016/j.rser.2016.06.031
  10. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. 2015. Plastic waste inputs from land into the ocean. Science 347:768-771.  https://doi.org/10.1126/science.1260352
  11. Kedzierski M, D'Almeida M, Magueresse A, Le Grand A, Duval H, Cesar G, Sire O, Bruzaud S, Le Tilly V. 2018. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Marine Pollution Bulletin 127:684-694.  https://doi.org/10.1016/j.marpolbul.2017.12.059
  12. Kim D, Kim W, Kim J. 2021. New bacterial surface display system development and application based on Bacillus subtilis YuaB biofilm component as an anchoring motif. Biotechnology and Bioprocess Engineering 26:39-46.  https://doi.org/10.1007/s12257-020-0397-7
  13. Lee W, Park Y-T, Lim S, Yeom SH, Jeon C, Lee H-S, Yeon YJ. 2021. Efficient Production of Phenyllactic Acid by Whole-cell Biocatalysis with Cofactor Regeneration System. Biotechnology and Bioprocess Engineering 26:402-407.  https://doi.org/10.1007/s12257-020-0270-8
  14. Mendenhall E. 2018. Oceans of plastic: A research agenda to propel policy development. Marine Policy 96:291-298.  https://doi.org/10.1016/j.marpol.2018.05.005
  15. Rao B, Zhou R, Dong Q, Liao X, Liu F, Chen W, Liu X, Min Y, Wang Y. 2020. Efficient surface display of L-glutamate oxidase and L-amino acid oxidase on Pichia pastoris using multi-copy expression strains. Biotechnology and Bioprocess Engineering 25:571-579.  https://doi.org/10.1007/s12257-019-0370-5
  16. Shirke AN, White C, Englaender JA, Zwarycz A, Butterfoss GL, Linhardt RJ, Gross RA. 2018. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry 57:1190-1200.  https://doi.org/10.1021/acs.biochem.7b01189
  17. Shojaei B, Abtahi M, Najafi M. 2020. Chemical recycling of PET: A stepping-stone toward sustainability. Polymers for Advanced Technologies 31:2912-2938.  https://doi.org/10.1002/pat.5023
  18. Son HF, Cho IJ, Joo S, Seo H, Sagong H-Y, Choi SY, Lee SY, Kim K-J. 2019. Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation. ACS Catalysis 9:3519-3526.  https://doi.org/10.1021/acscatal.9b00568
  19. Son HF, Joo S, Seo H, Sagong HY, Lee SH, Hong H, Kim KJ. 2020. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis. Enzyme Microb Technol 141:109656.  https://doi.org/10.1016/j.enzmictec.2020.109656
  20. Taniguchi I, Yoshida S, Hiraga K, Miyamoto K, Kimura Y, Oda K. 2019. Biodegradation of PET: current status and application aspects. ACS Catal. 9. 
  21. Urbar-Ulloa J, Montano-Silva P, Ramirez-Pelayo AS, Fernandez-Castillo E, Amaya-Delgado L, Rodriguez-Garay B, Verdin J. 2019. Cell surface display of proteins on filamentous fungi. Appl Microbiol Biotechnol 103:6949-6972.  https://doi.org/10.1007/s00253-019-10026-7
  22. Wang P, Cui T, Yang Y, Li J, Su Y, Liu N, Hong M. 2022. Degradation of 1, 4-dioxane by Newly Isolated Acinetobacter sp. M21 with Molasses as the Auxiliary Substrate. Biotechnology and Bioprocess Engineering 27:423-431.  https://doi.org/10.1007/s12257-021-0212-0
  23. Wei R, Tiso T, Bertling J, O'Connor K, Blank LM, Bornscheuer UT. 2020. Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis 3:867-871.  https://doi.org/10.1038/s41929-020-00521-w
  24. Welle F. 2011. Twenty years of PET bottle to bottle recycling-an overview. Resour Conserv Recycl 55. 
  25. Ye M, Ye Y, Du Z, Chen G. 2021. Cell-surface engineering of yeasts for whole-cell biocatalysts. Bioprocess and Biosystems Engineering 44:1003-1019.  https://doi.org/10.1007/s00449-020-02484-5
  26. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351. 
  27. Zhang F, Zhao Y, Wang D, Yan M, Zhang J, Zhang P, Ding T, Chen L, Chen C. 2021. Current technologies for plastic waste treatment: A review. Journal of Cleaner Production 282:124523.  https://doi.org/10.1016/j.jclepro.2020.124523
  28. Zhong-Johnson E, Voigt C, Sinskey A. 2021. An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films. Scientific Reports 11. 
  29. Shi L, Liu H, Gao S, Weng Y, Zhu L. 2021. Enhanced Extracellular Production of IsPETase in Escherichia coli via Engineering of the pelB Signal Peptide. Journal of Agricultural and Food Chemistry 69:2245-2252. https://doi.org/10.1021/acs.jafc.0c07469