DOI QR코드

DOI QR Code

Development and characterization of an eco-friendly packaging film using Gelidium amansii and Sargassum horneri

우뭇가사리와 괭생이모자반을 이용한 친환경 포장 필름 개발 및 특성 연구

  • 차완영 (주식회사 마린이노베이션) ;
  • 변찬 (주식회사 씨이비비과학)
  • Received : 2022.10.18
  • Accepted : 2022.11.25
  • Published : 2022.12.30

Abstract

In this study, a biodegradable packaging film was developed using two marine algae, Gelidium amansii, and Sargassum horneri. The chemical properties and microstructure of the developed film were evaluated using field emission scanning electron microscope, Fourier transform infrared spectroscopy, gas chromatography-Mass spectroscopy, and thermogravimetric analysis. Furthermore, the mechanical properties and toxicity of the film were evaluated using the ISO 1924 and IEC 62321 methods, respectively. The biodegradability of the film was evaluated according to ISO 14855-1:2012 method. The film was primarily made of cellulose and had biodegradability that was about 17 times greater than that of PBS, a representative eco-friendly plastic. Moreover, the mechanical properties improved by approximately 40% compared to the seaweed-based film of the previous study. The virulence test revealed that the content of all of the toxic substances listed in IEC62321 was below the measurement limit. An egg carton that can be used in practice was manufactured in accordance with ISO 534, and its applicability was tested using the biodegradable packaging film prepared.

Keywords

Acknowledgement

이 연구는 해양수산부 산하 해양수산과학기술진흥원의 지원을 받아 수행하게 되고 지원을 통해 그에 대해 감사를 표합니다. 이 논문는 2021년 해양수산부의 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(2021년 해양수산 기술창업 Scale-up 사업, 20210430)

References

  1. Iwata, T., "Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics," Sustainable Chemistry 54, 2-8 (2015).
  2. Lusher, A. L. et al., "Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling," Marine Pollution Bulletin 88, 325-333 (2014). https://doi.org/10.1016/j.marpolbul.2014.08.023
  3. Collignon, A. et al., "Neustonicmicroplastic and zooplankton in the North Western Mediterranean Sea," Marine Pollution Bulletin 64(4), 861-864 (2012). https://doi.org/10.1016/j.marpolbul.2012.01.011
  4. Gregory, M. R., Ryan, P. G., "Pelagic plastics and other seabourne persistent synthetic debris. In: Coe, J., Rogers, D. (Eds.)," Marine Debris: Sources. Impacts and Solutions, Springer Verlag, New York 46-66 (1997).
  5. Cole, M. et al., "Isolation of microplastics in biota-rich seawater samples and marine organisms," Scientific Reports 4, 4528 (2014).
  6. Madhavan, K. et al., "An overview of the recent developments in polylactide (PLA) research," Bioresource Technology 101(22) 8493-8501 (2010). https://doi.org/10.1016/j.biortech.2010.05.092
  7. Poirier, Y. et al., "Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants," Science 256(5056) 520-523 (2010). https://doi.org/10.1126/science.256.5056.520
  8. Kalambur, S., Rizvi, S. S. H., "Biodegradable and functionally superior starch-polyester nanocomposites from reactive extrusion," J. Appl. Polym. Sci., 96(4) 1072-1082 (2005). https://doi.org/10.1002/app.21504
  9. Huq, T. et al. "Nanocrystallinecellulose (NCC) reinforced alginate based biodegradable nanocomposite film," Carbohydrate Polymers 90(4):1757-63 (2012). https://doi.org/10.1016/j.carbpol.2012.07.065
  10. Wang, L., "Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate," J Food Eng 96(2), 199-207 (2010). https://doi.org/10.1016/j.jfoodeng.2009.07.025
  11. Filippo et al., "Cellulose derivatives-snail slime films: New disposable eco-friendly materials for food packaging," Food Hydrocolloids 111, 106247 (2021).
  12. Shih, Y. F. et al., "Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites," Journal of the Taiwan Institute of Chemical Engineers 45(4), 2039-2046 (2014). https://doi.org/10.1016/j.jtice.2014.02.015
  13. Jeong, H. et al., "Novel eco-friendly starch paper for use in flexible, transparent, and disposable organic electronics," Advanced Functional Material 1704433 (2017).
  14. Hermawan, D. et al., "Development of seaweed-based bamboo microcrystalline cellulose films intended for sustainable food packaging applications," Bio Resources 14(2) 3389-3410 (2019).
  15. Wang, X., Cheng, X., Chen, N., and Li, D., "Effect of ethylenediamine treatment on cellulose nanofibers and the formation of high-strength hydrogels," Bio Resources 14(1), 1141-1156 (2019).
  16. Hospodarova, V. et al., "Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials," American Journal of Analytical Chemistry 9, 303-310 (2018). https://doi.org/10.4236/ajac.2018.96023
  17. Abderrahim, B. et al., "Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study," World Journal of Environmental Engineering 3, 95-110 (2015).
  18. Dhevika, S. and Deivasigamani, B., "Phytochemical profiling and GC-MS analysis of CaulerpaRacemosa, Research Journal of Life Sciences, Bioinformatics," Pharmaceutical and Chemical Sciences 4(5), 155-165 (2018).
  19. Chinaglia, S., Tosin, M., Degli-Innocenti, F., "Biodegradation rate of biodegradable plastics at molecular level," Polymer Degradation and Stability 147, 237-244 (2018).
  20. Doh, H., Dunno. K. D., Whiteside W. S., "Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films," Food Bioscience 38, 100795 (2020).
  21. Shengbo, G. et al., "High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose," Chemical Engineering Journal 385, 123949 (2020).
  22. Chen, L. and Shen, Y., "Novel study on catalytic pyrolysis of chitin biomass using waste cathode material recovered from spent Li-ion battery," Journal of Environmental Management 315, 115133 (2022).
  23. Tobi et al., "Investigating the mechanical properties of paperboard packaging material for handling fresh produce under different environmental conditions: experimental analysis and finite element modelling," Journal of Applied Packaging Research 9(2), 20-34 (2017).
  24. Tang, X., Alavi, S., "Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability," Carbohydrate Polymers 85, 7-16 (2011). https://doi.org/10.1016/j.carbpol.2011.01.030