DOI QR코드

DOI QR Code

대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성

Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells

  • 심명섭 (신소재공학과, 고려대학교) ;
  • 정유진 (신소재공학과, 고려대학교) ;
  • 최동진 (신소재공학과, 고려대학교) ;
  • 박현정 (신소재공학과, 고려대학교) ;
  • 강윤묵 (에너지환경대학원, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교) ;
  • 이해석 (에너지환경대학원, 고려대학교)
  • MyeongSeob, Sim (Department of Material Science Engineering, Korea University) ;
  • Yujin, Jung (Department of Material Science Engineering, Korea University) ;
  • Dongjin, Choi (Department of Material Science Engineering, Korea University) ;
  • HyunJung, Park (Department of Material Science Engineering, Korea University) ;
  • Yoonmook, Kang (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Donghwan, Kim (Department of Material Science Engineering, Korea University) ;
  • Hae-Seok, Lee (Graduate School of Energy and Environment (KU-KIST Green School), Korea University)
  • 투고 : 2022.09.20
  • 심사 : 2022.11.25
  • 발행 : 2022.12.31

초록

Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

키워드

과제정보

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20193020010390).

참고문헌

  1. R. L. S. Michael Schmela, Global Market Outlook for Solar Power, 1-116 (2022).
  2. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, 352, aad4424 (2016).
  3. R. Arndt, J. Allison, A. Meulenberg Jr, J. Haynos, in 11th Photovoltaic Specialists Conference, (1975), pp. 40-43.
  4. P. Campbell, M. A. J. J. o. A. P. Green, Light trapping properties of pyramidally textured surfaces, 62, 243-249 (1987).
  5. E. V. Kerschaver, G. Beaucarne, Back-contact solar cells: a review. Progress in Photovoltaics: Research and Applications 14, 107-123 (2006). https://doi.org/10.1002/pip.657
  6. K. Yoshikawa et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy 2, 17032 (2017).
  7. J. Zhao, M. A. Green, Optimized antireflection coatings for high-efficiency silicon solar cells, IEEE Transactions on Electron Devices 38, 1925-1934 (1991). https://doi.org/10.1109/16.119035
  8. B. L. Sopori, R. A. Pryor, Design of antireflection coatings for textured silicon solar cells, Solar Cells 8, 249-261 (1983). https://doi.org/10.1016/0379-6787(83)90064-9
  9. H. Mackel, R. Ludemann, Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation, Journal of Applied Physics 92, 2602-2609 (2002). https://doi.org/10.1063/1.1495529
  10. K. D. Lee et al., Effects of Plasma Enhanced Chemical Vapor Deposition Radio Frequency on the Properties of SiNx:H Films, Journal of Nanoscience and Nanotechnology 17, 4687-4693 (2017). https://doi.org/10.1166/jnn.2017.14272
  11. A. Berk, Modtran5:200 update. Proceedings of SPIE 6233.
  12. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515, 540-544 (2014). https://doi.org/10.1038/nature13883
  13. D. N. Wright, E. S. Marstein, A. Holt. (IEEE).
  14. A. N. D.K. Cai, R. Kuckuk, H.M. Heise, Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication, Optical Materials 30, 1157-1161 (2008). https://doi.org/10.1016/j.optmat.2007.05.041
  15. T. Roychowdhury, C. V. Cushman, R. A. Synowicki, M. R. Linford, Polydimethylsiloxane: Optical properties from 191 to 1688 nm (0.735-6.491 eV) of the liquid material by spectroscopic ellipsometry, Surface Science Spectra 25, 026001 (2018).
  16. X. Gao et al., Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method, RSC Advances 7, 14761-14768 (2017). https://doi.org/10.1039/C7RA02061A
  17. V. Gupta et al., Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly, ACS Applied Materials & Interfaces 11, 28189-28196 (2019). https://doi.org/10.1021/acsami.9b08871
  18. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, M. C. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, Journal of Micromechanics and Microengineering 24, 035017 (2014).