DOI QR코드

DOI QR Code

Mineralogical Comparison between Asian Dust and Bedrock in Southern Mongolia

황사와 몽골 남부 기반암의 광물학적 비교

  • Gi Young, Jeong (Department of Earth and Environmental Sciences, Andong National University)
  • 정기영 (안동대학교 지구환경과학과)
  • Received : 2022.12.02
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

Mineralogical analysis of the bedrock of the Gobi Desert in southern Mongolia, the source of Asian dust, was conducted to trace the geological origin of the constituent minerals of Asian dust. The bedrock of the source of Asian dust consists of Paleozoic volcanics and volcaniclastic sedimentary rocks, Paleozoic granitic rocks, and Mesozoic sedimentary rocks. Paleozoic volcanics and volcaniclastic sediments lithified compactly, underwent greenschist metamorphism, and deformed to form mountain ranges. Mesozoic sedimentary rocks fill the basin between the mountain ranges of Paleozoic strata. In comparison to Paleozoic volcanic and sedimentary rocks, Mesozoic sedimentary rocks have lower contents of chlorite and plagioclase, but high contents of clay minerals including interstratified illite-smectite, smectite, and kaolinite. Paleozoic granites characteristically contain amphibole and biotite. Compared with the mineral composition of bedrock in source, Asian dust is a mixture of detrital particles originating from Paleozoic and Mesozoic bedrocks. However, the mineral composition of Mesozoic sedimentary rocks is closer to that of Asian dust. Less lithified Mesozoic sedimentary rocks easily disintegrated to form silty soils which are deflated to form Asian dust.

황사 구성 광물의 지질학적 근원을 추적하기 위해, 발원지인 몽골 남부 고비사막 기반암의 광물학적 특성을 분석하였다. 황사 발원지 기반암은 고생대 화산암 및 화산쇄설성 퇴적암, 고생대 화강암류, 중생대 퇴적암으로 구성되어 있다. 고생대 화산암 및 퇴적암은 매우 치밀하게 고화 및 변형되어 산지를 형성하며, 중생대 백악기 퇴적암은 고생대 화산암 및 퇴적암으로 이루어진 산맥 사이의 분지를 충전한다. 고생대층 암석은 녹니석과 사장석 함량이 높고, 녹색편암상의 변성작용을 받았다. 중생대 퇴적암층은 녹니석이 드물고, 스멕타이트, 일라이트-스멕타이트 혼합층, 카올리나이트 등의 점토광물이 풍부하다. 고생대 화강암류에는 각섬석과 흑운모가 특징적으로 함유되어 있다. 발원지 기반암의 광물학적 특성과 비교하면, 황사는 고생대층과 중생대층 기원 쇄설물의 혼합물이나, 중생대 퇴적암에 더 가깝다. 점토 함량이 높고, 덜 고화된 중생대 퇴적암류는 잘 부스러져 침식되기 쉬운 실트질 표토가 되어 황사 광물 구성에 기여한다.

Keywords

Acknowledgement

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었다. 원고의 미비점을 지적하여 주시고 오류를 찾아 개선 방향을 안내하여 주신 두 분의 익명 심사위원님들께 감사드립니다.

References

  1. Atkinson, J.D., Murray, B.J., Woodhouse, M.T., Whale, T.F., Baustian, K.J., Carslaw, K.S., Dobbie, S., O'Sullivan, D. and Malkin, T.L., 2013, The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355-358. doi:10.1038/nature12278.
  2. Badarch, G., Cunningham, W.K. and Windley, B.F., 2002, A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21, 87-110.
  3. Boles, J.R., 1982, Active albitization of plagioclase, Gulf Coast Tertiary. American Journal of Science, 282, 165-180. https://doi.org/10.2475/ajs.282.2.165
  4. Buseck, P.R. and Posfai, M., 1999, Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences, 96, 3372-3379. https://doi.org/10.1073/pnas.96.7.3372
  5. Chipera, S.J. and Bish, D.L., 2013, Fitting Full X-Ray Diffraction Patterns for Quantitative Analysis: A Method for Readily Quantifying Crystalline and Disordered Phases. Advances in Materials Physics and Chemistry, 3, 47-53. https://doi.org/10.4236/ampc.2013.31A007
  6. Cunningham, D., Davies, S. and McLean, D., 2009, Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: Implications for the crustal evolution of the Gobi Altai region. Journal of Geological Society, London. 166, 321-333. https://doi.org/10.1144/0016-76492008-082
  7. Graham, S.A., Hendrix, M.S., Johnson, C.L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L.E. and Hacker, B.R., 2001, Sedimentary record and tectonic implications of late Mesozoic rifting, southeast Mongolia. Geological Society of America Bulletin, 113, 1560-1579. https://doi.org/10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
  8. Guy, A., Schulmann, K., Munschy, M., Miehe, J.M., Edel, J.B., Lexa, O. and Fairhead, D., 2014, Geophysical constraints for terrane boundaries in southern Mongolia, Journal of Geophysical Research: Solid Earth, 119, 7966-7991. https://doi.org/10.1002/2014jb011026
  9. Helo, C., Hegner, E., Kroner, A., Badarch, G., Tomurtogoo, O., Windley, B.F. and Dulski, P., 2006, Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth. Chemical Geology, 227, 236-257. https://doi.org/10.1016/j.chemgeo.2005.10.003
  10. Jeong, G.Y., 2008, Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. Journal of Geophysical Research: Atmospheres, 113, D02208, doi:10.1029/2007JD008606.
  11. Jeong, G.Y., 2020, Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air. Atmospheric Chemistry and Physics, 20, 7411-7428. https://doi.org/10.5194/acp-20-7411-2020
  12. Jeong, G.Y. and Achterberg, E.P., 2014, Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmospheric Chemistry and Physics, 14, 12415-12428. https://doi.org/10.5194/acp-14-12415-2014
  13. Jeong, G.Y. and Nousiainen, T., 2014, TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmospheric Chemistry and Physics, 14, 7233-7254, doi:10.5194/acp-14-7233-2014, 2014.
  14. Jeong, G.Y., Choi, H.-J. and Kwon, S.-K., 2011a, Single-particle mineralogy and mixing state of Asian Dust, Spring, 2009. Journal of the Mineralogical Society of Korea, 24, 225-234. https://doi.org/10.9727/jmsk.2011.24.3.225
  15. Jeong, G.Y., Hillier, S. and Kemp, R.A., 2008, Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 27, 1271-1287. https://doi.org/10.1016/j.quascirev.2008.02.006
  16. Jeong, G.Y., Hillier, S. and Kemp, R.A., 2011b, Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75, 245-255. https://doi.org/10.1016/j.yqres.2010.09.001
  17. Jeong, G.Y., Choi, J.-H., Lim, H.S., Seong, C. and Yi, S.B., 2013, Deposition and weathering of Asian dust in Paleolithic sites, Korea. Quaternary Science Reviews, 78, 283-300. https://doi.org/10.1016/j.quascirev.2013.08.002
  18. Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C. and Chun, Y., 2014, Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmospheric Chemistry and Physics, 14, 505-521, doi:10.5194/acp-14-505-2014.
  19. Journet, E., Desboeufs, K.V., Caquineau, S. and Colin, J.-L., 2008, Mineralogy as a critical factor of dust iron solubility. Geophysical Research Letters, 35, L07805, doi:10.1029/2007GL031589.
  20. Karydis, V.A., Tsimpidi, A.P., Bacer, S., Pozzer, A., Nenes, A. and Lelieveld, J., 2017, Global impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry and Physics, 17, 5601-5621. https://doi.org/10.5194/acp-17-5601-2017
  21. Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S.J., Michaelides, A., Gerthsen, D. and Leisner, T., 2017, Active sites in heterogeneous ice nucleation-the example of K-rich feldspars. Science, 355, 367-371. https://doi.org/10.1126/science.aai8034
  22. Lamb, M.A. and Badarch, G., 2001, Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: new geochemical and petrographic constraints. In: Henrix, M. S., and Davis, G. A., eds., Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir 194, Boulder, Colorado, 117-149.
  23. Laskin, A., Wietsma, T.W., Krueger, B.J. and Grassian, V.H., 2005, Heterogeneous Chemistry of Individual Mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study. Journal of Geophysical Research: Atmospheres, 110, D10208, doi:10.1029/2004JD005206.
  24. Martin, J.H. and Fitzwater, S.F., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341-342. https://doi.org/10.1038/331341a0
  25. McKendry, I.G., Macdonald, A.M., Leaitch, W.R., van Donkelaar, A., Zhang, Q., Duck, T. and Martin, R.V., 2008, TransPacific dust events observed at Whistler, British Columbia during INTEXB. Atmospheric Chemistry and Physics, 8, 6297-6307, doi:10.5194/acp-8-6297-2008.
  26. Mineral Resources Authority of Mongolia and Mongolian Academy of Sciences, 1998, Geological Map of Mongolia Scale 1:1,000,000 Summary. Ulaanbaatar.
  27. Mizota, C., Endo, H., Um, K.T., Kusakabe, M. and Matsuhisa, Y., 1991, The eolian origin of silty mantle in sedimentary soils from Korea and Japan. Geoderma 49, 153-164. https://doi.org/10.1016/0016-7061(91)90098-E
  28. Moore, D.M. and Reynolds Jr., R.C., 1997, X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, USA.
  29. Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol1, M.C., Mahowald, N.M., Scanza, R.A., Hamilton, D.S., Johnson, M.S., Meskhidze, N., Kok, J.F., Guieu, C., Baker, A.R., Jickells, T.D., Sarin, M.M., Bikkina, S., Shelley, R., Bowie, A., Perron, M.M.G. and Duce, R.A., 2018, Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 15, 6659-6684. https://doi.org/10.5194/bg-15-6659-2018
  30. Nousiainen, T., 2009, Optical modeling of mineral dust particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1261-1279, doi:10.1016/j.jqsrt.2009.03.002.
  31. Park, M.Y. and Jeong, G.Y., 2016, Mineralogical Properties of Asian Dust Sampled at Deokjeok Island, Incheon, Korea in February 22, 2015. Journal of the Mineralogical Society of Korea, 29, 79-87. https://doi.org/10.9727/jmsk.2016.29.2.79
  32. Rex, R.W., Syers, J.K., Jackson, M.L. and Clayton, R.N., 1969, Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments. Science, 163, 277-279. https://doi.org/10.1126/science.163.3864.277
  33. Shi, Z., Shao, L., Jones, T.P. and Lu, S., 2005, Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. Journal of Geophysical Research: Atmospheres, 110, D01303, doi:10.1029/2004JD005073.
  34. Sokolik, I.N. and Toon, O.B., 1999, Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research: Atmospheres, 104, 9423-9444. https://doi.org/10.1029/1998JD200048
  35. Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y. and Sugimoto, N., 2009, Asian dust transported one full circuit around the globe. Nature Geoscience, 2, doi10.1038/NGEO583.
  36. Winter, J.D., 2013, Principles of igneous and metamorphic petrology. Pearson education.