DOI QR코드

DOI QR Code

Optimal Conditions for Pretreated Sample for Sr Isotope Analysis by MC-ICP-MS: A Comparison Between Eichrom (SR-R50-S)'s and Bio-Rad(AG®50W-X8)'s Resins

다검출기 유도결합 플라즈마 질량분석기에 의한 Sr 동위원소 분석을 위해 전처리된 시료의 최적 조건: Eichrom사 Sr 수지(SR-R50-S)와 Bio-Rad사 수지(AG®50W-X8) 비교

  • Myoung Jung, Kim (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Seung-Gu, Lee (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 김명정 (한국지질자원연구원 국토지질연구본부) ;
  • 이승구 (한국지질자원연구원 국토지질연구본부)
  • Received : 2022.08.02
  • Accepted : 2022.10.13
  • Published : 2022.12.31

Abstract

The Sr isotope ratio, which is used as basic data for rock formation time, crustal and mantle evolution studies, is determined by mass spectrometer such as thermal ionization mass spectrometry (TIMS) or multi-detector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this technical report, we compared how incomplete chemical separation of elements affects the determination of Sr isotope ratios. For the experiment, commercial resin, NBS987(NIST SRM987) Sr isotope standard, and rock standard samples from the Geological Survey of Japan (GSJ) such as JG1a, JB3 and JA1 were used. As a result of the comparative experiment, it was clearly observed that the measured values of 87Sr/86Sr change when Rb remains due to incomplete separation of the NBS987 Sr isotope standard sample as well as the rock standard samples of GSJ. This indicates that complete separation is an important factor since the calculated value deviates from the true value even though correction for isotope interference by isobar is performed when measuring the isotope ratio with MC-ICP-MS. This also suggests that, when reporting the measurement result of Sr isotope ratio using MC-ICP-MS, the measurement strength of 85Rb should be reported together with the measurement strength of all isotopes of Sr so that isotope interference by isobar can be judged.

지질과학 분야에서 암석의 생성 시기, 지각과 맨틀 진화연구의 기초자료로 활용되는 Sr 동위원소비는 열이온화 질량분석기(thermal ionization mass spectrometry, TIMS) 혹은 다검출기 유도결합 플라즈마 질량분석기(multi-collector plasma ionization mass spectrometry, MC-ICP-MS)와 같은 질량분석기를 이용하여 측정할 수 있다. 이 기술보고에서는, Sr 동위원소비 측정시, 원소의 불완전한 화학적 분리가 Sr 동위원소비의 참값 (true value)에 어떤 영향을 미치는지를 비교하였다. 실험에는 상업용 레진, NBS987(NIST SRM987) Sr 동위 원소 표준물질 그리고 일본지질조사소의 암석표준시료 JG1a, JB3, JA1를 이용하였다. 비교실험 결과, NBS987 Sr 동위원소 표준시료, 일본지질조사소의 암석표준시료 JG1a, JB3, JA1 모두 불완전한 분리에 의해 Rb이 남아있는 경우 87Sr/86Sr의 측정값이 변하는 것이 명확하게 관찰된다. 이는 질량분석기 특히 MC-ICP-MS로 동위 원소비를 측정하고자 하는 경우, 동종동위원소의 간섭에 대한 보정에도 불구하고 측정값은 참값에서 벗어나므로 완전한 분리가 중요한 인자임을 지시해준다. 그러므로 MC-ICP-MS를 이용한 Sr 동위원소비 측정결과를 보고할 때는, 동종동위원소에 의한 영향을 판단할 수 있도록 Sr의 동위원소 전체의 측정강도와 더불어 85Rb의 측정강도도 함께 보고돼야 할 것이다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 국토 지질조사 및 지질도-지질주제도 발간(과제번호 22-3111-1) 및 한구연구재단의 기본연구사업(화강암질 마그마의 분화과정이 희토류원소의 방사성 동위원소와 안정동위원소 조성변화에 미치는 영향(2020R1F1A1075924, NP2020-012) 과제의 지원 하에 수행되었다. 이 기술 보고의 내용이 향상되도록 세밀하게 검토해주신 한국기초과학지원연구원의 정연중 박사님과 익명의 심사위원께 깊은 감사드립니다.

References

  1. Amsellem, E., Moynier, F., Day, J.M., Moreira, M., Puchtel, I.S. and Teng, F.Z., 2018, The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites. Chemical Geology, 483, 595-602. https://doi.org/10.1016/j.chemgeo.2018.03.030
  2. Bacon, J.R., Butler, O.T., Cairns, W.R., Cook, J.M., Davidson, C.M., Cavoura, O. and Mertz-Kraus, R., 2020, Atomic spectrometry update-a review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 35(1), 9-53. https://doi.org/10.1039/c9ja90060h
  3. Balcaen, L., Schrijver, I.D., Moens, L. and Vanhaecke, F., 2005, Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry. International Journal of Mass Spectrometry, 242, 251-255. https://doi.org/10.1016/j.ijms.2004.10.025
  4. Eichrom Technologies, LLC., 2014, Analytical Procedures, Strontium-89/90 in Water (with vacuum box system), Method No. SRW01VBS, http://www.eichrom.com/wp-content/uploads/2018/02/srw01-15_sr-water-vbs.pdf
  5. Feuerstein J., Boulyga S.F., Galler P., Stingeder G. and Prohaska T., 2008, Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS). Journal of Environmental Radioactivity, 11, 1764-9
  6. Horwitz, E.P., Chiarizia, R. and Dietz, M.L., 1992, A Novel Strontium-Selective Extraction Chromatographic Resin. Solvent Extraction and Ion Exchange. 10, 313.
  7. Kagami, H., Yokose, H., Honma, H., (1989)87Sr/86Sr and 143Nd/144Nd ratios of GSJ rock reference samples; JB-1a, JA-1 and JG-1a, Geochemical Journal, 23, 209-214. https://doi.org/10.2343/geochemj.23.209
  8. Kurasawa, H., 1984, Strontium isotopic consequence of the volcanic rocks from Fuji, Hakone and Izu areas. Chishitsu Chosajo Geppo, 35(12), 637-659.
  9. Lee, S.-G. and Tanaka, T., 2021a, Gd matrix effects on Eu isotope fractionation using MC-ICP-MS: Optimizing Europium isotope ratio measurements in geological rock samples. International Journal of Mass Spectrometry, 156, 42-50.
  10. Lee, S.-G. and Tanaka, T., 2021b, Eu isotope fractionation in highly fractionated igneous rocks with large Eu negative anomaly. Geochemical Journal, 55/6, e9-e17. https://doi.org/10.2343/geochemj.2.0631
  11. Lee, S.-W., Park J., Park, H.-W., Hwang, J.Y., Kim, K., Chung, H.-M. and Choi. J.-W., 2018, Improving strontium isotope ratio analysis using MC-ICP-MS, Journal of the Korean Society for Environmental Analysis, 21(4), 237-242.
  12. Li, C.-F., Chu, Z.-Y., Guo, J.-H., Li, Y.-L., Yang, Y.-H., Li, X.-H., 2015, A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological spectrometry. Analytical Methods. 7, 4793.
  13. Maxwell, S.L., Culligan, B.K., Hutchinson, J.B., Utsey, R.C., McAlister, D.R., 2015, Rapid Determination of 90Sr in Seawater Samples, Journal of Radioanalytical and Nuclear Chemistry, 303, 709-717. https://doi.org/10.1007/s10967-014-3391-8
  14. Na C.-k., Nakano.T., Tazawa K., Sakagawa M., Ito T., 1995, A systematic and practical method of liquid chromatography for the determination of Sr and Nd isotopic ratios and REE concentrations in geological samples. Chemical Geology, 123, 225-237. https://doi.org/10.1016/0009-2541(95)00005-7
  15. Paytan, A., Griffith, E.M., Eisenhauer, A., Hain, M.P., Wallmann, K. and Ridgwell, A., 2021, A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 371, 6536, 1346-1350. https://doi.org/10.1126/science.aaz9266
  16. Pin, C., Gannoun, A. and Dupont, A., 2014, Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MCICP-MS. Journal of Analytical Atomic Spectrometry, 29, 1858-1870. https://doi.org/10.1039/c4ja00169a
  17. Rosman, K.J.R. and Taylor, R.D.P, 1998, Isotopic compositions of the elements 1997. Journal of Physical and Chemical Reference Data, 27, 1275.
  18. Su, N., Yang, S., Deng, K., Chang, Y.P., Xu, J. and Wu, Z., 2021, Radiogenic and stable Sr isotopes constrain weathering processes in rapidly eroding Taiwan catchments. Earth and Planetary Science Letters, 576, 117235.
  19. Yamamoto, M. and Maruyama, T., 1996, The Sr and Nd isotopic analysis and the quantitative analysis of Rb and Sr by using MAT 261. Rep. of the Research Institute of Natural Resources, Mining College, Akita University. 61, 17-30.
  20. Yoshimura, T., Wakaki, S., Kawahata, H., Hossain, H. M., Manaka, T., Suzuki, A., Ishikawa, T. and Ohkouchi, N., 2021, Stable strontium isotopic compositions of river water, groundwater and sediments from the Ganges-Brahmaputra-Meghna River system in Bangladesh. Frontiers in Earth Science, 1.
  21. Zuma, M.C., Lakkakula, J. and Mketo, N., 2020, Recent trends in sample preparation methods and plasma-based spectrometric techniques for the determination of rare earth elements in geological and fossil fuel samples. Applied Spectroscopy Reviews, 1-25.