DOI QR코드

DOI QR Code

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du (College of Aerospace and Civil Engineering, Harbin Engineering University) ;
  • Jingwei, Zhou (Xinjiang Goldwind Science & Technology Co., Ltd.) ;
  • Fengming, Li (College of Aerospace and Civil Engineering, Harbin Engineering University)
  • Received : 2021.08.13
  • Accepted : 2022.11.09
  • Published : 2022.11.25

Abstract

Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

Keywords

Acknowledgement

This research is supported by the National Natural Science Foundation of China (No. 12072083).

References

  1. Atalay, O. and Kayran, A. (2018), "Load reduction in wind turbines with bend-twist coupled blades without power loss at underrated wind speeds", J. Phys.: Conference Series, 1037(4), https://doi.org/10.1088/1742-6596/1037/4/042015.
  2. Bagherpour, T., Li, X.M., Manolas, D.I. and Riziotis, V.A. (2018), "Modeling of material bend-twist coupling on wind turbine blades", Compos. Struct., 193, 237-246. https://doi.org/10.1016/j.compstruct.2018.03.071.
  3. Bernhammer, L.O., van Kuik, G.A.M. and De Breuker, R. (2016), "Fatigue and extreme load reduction of wind turbine components using smart rotors", J. Wind Eng. Ind. Aerod.. 154, 84-95. https://doi.org/10.1016/j.jweia.2016.04.001.
  4. Bhargava, V., Kasuba, S., Maddula, S.P., Jagadish, D., Khan, M.A., Padhy, C.P., Chinta, H.P., Chekuri, C.S.V. and Dwivedi, Y.D. (2020), "A case study of wind turbine loads and performance using steady-state analysis of BEM", Int. J. Sust. Energy, 40(1), 22-40. https://doi.org/10.1080/14786451.2020.1787411.
  5. Bir, G. and Jonkman, J. (2007), "Aeroelastic instabilities of large offshore and onshore wind turbines", J. Phys.: Conference Series, 75, https://doi.org/10.1088/1742-6596/75/1/012069.
  6. Bossanyi, E.A. (2003), "Individual blade pitch control for load reduction", Wind Energy, 6(2), 119-128. https://doi.org/10.1002/we.76.
  7. Bossanyi, E.A. (2013), "GH Bladed-Theory Manual, Version 4.4", Garrad Hassan and Partners.
  8. Bottasso, C.L., Croce, A., Gualdoni, F. and Montinari, P. (2016), "Load mitigation for wind turbines by a passive aeroelastic device", J. Wind Eng. Ind. Aerod., 148, 57-69. https://doi.org/10.1016/j.jweia.2015.11.001.
  9. Boudounit, H., Tarfaoui, M., Saifaoui, D. and Nachtane, M. (2019), "Structural analysis of offshore wind turbine blades using finite element method", Wind Eng., 44(2), 168-180. https://doi.org/10.1177/0309524X198498.
  10. Candemir, I. (2015), "A First Course in the Finite Element Method Fourth Edition".
  11. Chen, J., Shen, X., Zhu, X. and Du, Z. (2019), "A study on the capability of backward swept blades to mitigate loads of wind turbines in shear flow", J. Energy Resou. Technol., 141(8). https://doi.org/10.1115/1.4042716.
  12. Clough, R.W., Penzien, J. and Griffin, D.S. (1977), "Dynamics of structures / R.W. Clough", J. Appl. Mech., 44(2), 366. https://doi.org/10.1115/1.3424082
  13. Dai, J.C., Hu, Y.P., Liu, D.S. and Long, X. (2011), "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model", Renew. Energ., 36(3), 1095-1104. https://doi.org/10.1016/j.renene.2010.08.024.
  14. Della Posta, G., Leonardi, S. and Bernardini, M. (2022), "A twoway coupling method for the study of aeroelastic effects in large wind turbines", Renew. Energ., 190, 971-992. https://doi.org/10.1016/j.renene.2022.03.158.
  15. Elgammi, M., Sant, T. and Alshaikh, M. (2020), "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm", Renew. Energ., 146, 371-383. https://doi.org/10.1016/j.renene.2019.06.114.
  16. Hsu, M.C. and Bazilevs, Y. (2012), "Fluid-structure interaction modeling of wind turbines: simulating the full machine", Comput. Mech., 50(6), 821-833. https://doi.org/10.1007/s00466-012-0772-0.
  17. Hansen, M. (2015), Aerodynamics of wind turbines, Routledge.
  18. International Electrotechnical Commission (2019), "Wind energy generation systems-Part 1: Design requirements", International Electrotechnical Commission: Geneva, Switzerland. 
  19. Karakalas, A.A., Manolas, D.I., Machairas, T.T., Riziotis, V.A. and Saravanos, D.A. (2019), "Active load alleviation potential of adaptive wind turbine blades using shape memory alloy actuators", Wind Energy, 22(5), 620-637. https://doi.org/10.1002/we.2311.
  20. Kragh, K.A. and Hansen, M.H. (2014), "Load alleviation of wind turbines by yaw misalignment", Wind Energy, 17(7), 971-982. https://doi.org/10.1002/we.1612.
  21. Lanzafame, R. and Messina, M. (2007), "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory", Renew. Energ., 32(14), 2291-2305. https://doi.org/10.1016/j.renene.2006.12.010.
  22. Liu, T., Ren, Y. and Yang, X. (2013), "Nonlinear aeroelastic stability analysis of wind turbine blade with bending-bending-twist coupling", J. Fluid. Struct., 42, 488-502. https://doi.org/10.1016/j.jfluidstructs.2013.08.006.
  23. Mo, W., Li, D., Wang, X. and Zhong, C. (2015), "Aeroelastic coupling analysis of the flexible blade of a wind turbine", Energy. 89, 1001-1009. https://doi.org/10.1016/j.energy.2015.06.046.
  24. Mulugeta, B. and Gerawork, A. (2017), "Aerodynamic design of horizontal axis wind turbine blades", FME Transaction., 45(4), 647-660. https://doi.org/10.5937/fmet1704647M
  25. Meng, H., Lien, F.S. and Li, L. (2018), "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade", Renew. Energ., 116, 423-437. https://doi.org/10.1016/j.renene.2017.08.074.
  26. Pinto, R.L.U.D.F. and Goncalves, B.P.F. (2017), "A revised theoretical analysis of aerodynamic optimization of horizontalaxis wind turbines based on BEM theory", Renew. Energ., 105, 625-636. https://doi.org/10.1016/j.renene.2016.12.076.
  27. Rafiee, R., Tahani, M. and Moradi, M. (2016), "Simulation of aeroelastic behavior in a composite wind turbine blade", J. Wind Eng. Ind. Aerod., 151, 60-69. https://doi.org/10.1016/j.jweia.2016.01.010.
  28. Rezaei, M.M., Zohoor, H. and Haddadpour, H. (2018), "Aeroelastic modeling and dynamic analysis of a wind turbine rotor by considering geometric nonlinearities", J. Sound Vib., 432, 653-679. https://doi.org/10.1016/j.jsv.2018.06.063.
  29. Ryu, K.W., Kang, S.H., Seo, Y.H. and Lee, W.R. (2016), "Prediction of aerodynamic loads for NREL phase VI wind turbine blade in yawed condition", Int. J. Aeronaut. Sp. Sci., 17(2), 157-166. https://doi.org/10.5139/IJASS.2016.17.2.157.
  30. Sang, S., Wen, H., Cao, A.X., Du, X.R., Zhu, X., Shi, Q. and Qiu, C.H. (2020), "Dynamic modification method for BEM of wind turbine considering the joint action of installation angle and structural pendulum motion", Ocean Eng., 215, https://doi.org/10.1016/j.oceaneng.2020.107528.
  31. Sayed, M., Klein, L., Lutz, T. and Kramer, E. (2019), "The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine", Renew. Energ., 140, 304-318. https://doi.org/10.1016/j.renene.2019.03.046.
  32. Shams, S. and Esbati Lavasani, R. (2019), "Aeroelastic stability analysis of a wind turbine blade section with trailing edge flap using a flexible unsteady blade elements momentum theory", J. Braz. Soc. Mech. Sci. Eng., 41(8). https://doi.org/10.1007/s40430-019-1789-5.
  33. Smith, I.M., Griffiths, D.V. and Margetts, L. (2015), Programming the finite element method: Fifth Edition, Programming the finite element method: Fifth Edition.
  34. Sun, Z., Chen, J., Shen, W.Z. and Zhu, W.J. (2016), "Improved blade element momentum theory for wind turbine aerodynamic computations", Renew. Energ., 96, 824-831. https://doi.org/10.1016/j.renene.2016.05.035.
  35. Tahir, A., Elgabaili, M., Rajab, Z., Buaossa, N., Khalil, A. and Mohamed, F. (2018), "Optimization of small wind turbine blades using improved blade element momentum theory", Wind Eng., 43(3), 299-310. https://doi.org/10.1177/0309524X18791395.
  36. Thakur, S., Abhinav, K.A. and Saha, N. (2018), "Load mitigation using slotted flaps in offshore wind turbines", J. Offshore Mech. Arct., 140(6). https://doi.org/10.1115/1.4040234.
  37. Tian, D., Dai, S.M., Liu, S. and Wang, N.B. (2012), "Analysis of aerodynamic performance for wind turbine based on amended calculation of BEM theory", Adv. Mater. Res., 608-609, 775-780. https://doi.org/10.4028/www.scientific.net/AMR.608-609.775.
  38. Vesel, R.W. and McNamara, J.J. (2014), "Performance enhancement and load reduction of a 5 MW wind turbine blade", Renew. Energ., 66, 391-401. https://doi.org/10.1016/j.renene.2013.12.019.
  39. Wang, L., Liu, X. and Kolios, A. (2016), "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling", Renew. Sust. Energ. Rev., 64, 195-210. https://doi.org/10.1016/j.rser.2016.06.007.
  40. Wang, L., Liu, X., Renevier, N., Stables, M. and Hall, G.M. (2014), "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory", Energy, 76, 487-501. https://doi.org/10.1016/j.energy.2014.08.046.
  41. Wood, D.H. and Okulov, V.L. (2017), "Nonlinear blade elementmomentum analysis of Betz-Goldstein rotors", Renew. Energ., 107, 542-549. https://doi.org/10.1016/j.renene.2017.02.027.
  42. Zhou, J.W., Zhang, W., Jiang, X. and Zhai, E.D. (2022), "Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method", Renew. Energ., 188, 96-113. https://doi.org/10.1016/j.renene.2022.02.032.