Acknowledgement
This research is supported by the National Natural Science Foundation of China (No. 12072083).
References
- Atalay, O. and Kayran, A. (2018), "Load reduction in wind turbines with bend-twist coupled blades without power loss at underrated wind speeds", J. Phys.: Conference Series, 1037(4), https://doi.org/10.1088/1742-6596/1037/4/042015.
- Bagherpour, T., Li, X.M., Manolas, D.I. and Riziotis, V.A. (2018), "Modeling of material bend-twist coupling on wind turbine blades", Compos. Struct., 193, 237-246. https://doi.org/10.1016/j.compstruct.2018.03.071.
- Bernhammer, L.O., van Kuik, G.A.M. and De Breuker, R. (2016), "Fatigue and extreme load reduction of wind turbine components using smart rotors", J. Wind Eng. Ind. Aerod.. 154, 84-95. https://doi.org/10.1016/j.jweia.2016.04.001.
- Bhargava, V., Kasuba, S., Maddula, S.P., Jagadish, D., Khan, M.A., Padhy, C.P., Chinta, H.P., Chekuri, C.S.V. and Dwivedi, Y.D. (2020), "A case study of wind turbine loads and performance using steady-state analysis of BEM", Int. J. Sust. Energy, 40(1), 22-40. https://doi.org/10.1080/14786451.2020.1787411.
- Bir, G. and Jonkman, J. (2007), "Aeroelastic instabilities of large offshore and onshore wind turbines", J. Phys.: Conference Series, 75, https://doi.org/10.1088/1742-6596/75/1/012069.
- Bossanyi, E.A. (2003), "Individual blade pitch control for load reduction", Wind Energy, 6(2), 119-128. https://doi.org/10.1002/we.76.
- Bossanyi, E.A. (2013), "GH Bladed-Theory Manual, Version 4.4", Garrad Hassan and Partners.
- Bottasso, C.L., Croce, A., Gualdoni, F. and Montinari, P. (2016), "Load mitigation for wind turbines by a passive aeroelastic device", J. Wind Eng. Ind. Aerod., 148, 57-69. https://doi.org/10.1016/j.jweia.2015.11.001.
- Boudounit, H., Tarfaoui, M., Saifaoui, D. and Nachtane, M. (2019), "Structural analysis of offshore wind turbine blades using finite element method", Wind Eng., 44(2), 168-180. https://doi.org/10.1177/0309524X198498.
- Candemir, I. (2015), "A First Course in the Finite Element Method Fourth Edition".
- Chen, J., Shen, X., Zhu, X. and Du, Z. (2019), "A study on the capability of backward swept blades to mitigate loads of wind turbines in shear flow", J. Energy Resou. Technol., 141(8). https://doi.org/10.1115/1.4042716.
- Clough, R.W., Penzien, J. and Griffin, D.S. (1977), "Dynamics of structures / R.W. Clough", J. Appl. Mech., 44(2), 366. https://doi.org/10.1115/1.3424082
- Dai, J.C., Hu, Y.P., Liu, D.S. and Long, X. (2011), "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model", Renew. Energ., 36(3), 1095-1104. https://doi.org/10.1016/j.renene.2010.08.024.
- Della Posta, G., Leonardi, S. and Bernardini, M. (2022), "A twoway coupling method for the study of aeroelastic effects in large wind turbines", Renew. Energ., 190, 971-992. https://doi.org/10.1016/j.renene.2022.03.158.
- Elgammi, M., Sant, T. and Alshaikh, M. (2020), "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm", Renew. Energ., 146, 371-383. https://doi.org/10.1016/j.renene.2019.06.114.
- Hsu, M.C. and Bazilevs, Y. (2012), "Fluid-structure interaction modeling of wind turbines: simulating the full machine", Comput. Mech., 50(6), 821-833. https://doi.org/10.1007/s00466-012-0772-0.
- Hansen, M. (2015), Aerodynamics of wind turbines, Routledge.
- International Electrotechnical Commission (2019), "Wind energy generation systems-Part 1: Design requirements", International Electrotechnical Commission: Geneva, Switzerland.
- Karakalas, A.A., Manolas, D.I., Machairas, T.T., Riziotis, V.A. and Saravanos, D.A. (2019), "Active load alleviation potential of adaptive wind turbine blades using shape memory alloy actuators", Wind Energy, 22(5), 620-637. https://doi.org/10.1002/we.2311.
- Kragh, K.A. and Hansen, M.H. (2014), "Load alleviation of wind turbines by yaw misalignment", Wind Energy, 17(7), 971-982. https://doi.org/10.1002/we.1612.
- Lanzafame, R. and Messina, M. (2007), "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory", Renew. Energ., 32(14), 2291-2305. https://doi.org/10.1016/j.renene.2006.12.010.
- Liu, T., Ren, Y. and Yang, X. (2013), "Nonlinear aeroelastic stability analysis of wind turbine blade with bending-bending-twist coupling", J. Fluid. Struct., 42, 488-502. https://doi.org/10.1016/j.jfluidstructs.2013.08.006.
- Mo, W., Li, D., Wang, X. and Zhong, C. (2015), "Aeroelastic coupling analysis of the flexible blade of a wind turbine", Energy. 89, 1001-1009. https://doi.org/10.1016/j.energy.2015.06.046.
- Mulugeta, B. and Gerawork, A. (2017), "Aerodynamic design of horizontal axis wind turbine blades", FME Transaction., 45(4), 647-660. https://doi.org/10.5937/fmet1704647M
- Meng, H., Lien, F.S. and Li, L. (2018), "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade", Renew. Energ., 116, 423-437. https://doi.org/10.1016/j.renene.2017.08.074.
- Pinto, R.L.U.D.F. and Goncalves, B.P.F. (2017), "A revised theoretical analysis of aerodynamic optimization of horizontalaxis wind turbines based on BEM theory", Renew. Energ., 105, 625-636. https://doi.org/10.1016/j.renene.2016.12.076.
- Rafiee, R., Tahani, M. and Moradi, M. (2016), "Simulation of aeroelastic behavior in a composite wind turbine blade", J. Wind Eng. Ind. Aerod., 151, 60-69. https://doi.org/10.1016/j.jweia.2016.01.010.
- Rezaei, M.M., Zohoor, H. and Haddadpour, H. (2018), "Aeroelastic modeling and dynamic analysis of a wind turbine rotor by considering geometric nonlinearities", J. Sound Vib., 432, 653-679. https://doi.org/10.1016/j.jsv.2018.06.063.
- Ryu, K.W., Kang, S.H., Seo, Y.H. and Lee, W.R. (2016), "Prediction of aerodynamic loads for NREL phase VI wind turbine blade in yawed condition", Int. J. Aeronaut. Sp. Sci., 17(2), 157-166. https://doi.org/10.5139/IJASS.2016.17.2.157.
- Sang, S., Wen, H., Cao, A.X., Du, X.R., Zhu, X., Shi, Q. and Qiu, C.H. (2020), "Dynamic modification method for BEM of wind turbine considering the joint action of installation angle and structural pendulum motion", Ocean Eng., 215, https://doi.org/10.1016/j.oceaneng.2020.107528.
- Sayed, M., Klein, L., Lutz, T. and Kramer, E. (2019), "The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine", Renew. Energ., 140, 304-318. https://doi.org/10.1016/j.renene.2019.03.046.
- Shams, S. and Esbati Lavasani, R. (2019), "Aeroelastic stability analysis of a wind turbine blade section with trailing edge flap using a flexible unsteady blade elements momentum theory", J. Braz. Soc. Mech. Sci. Eng., 41(8). https://doi.org/10.1007/s40430-019-1789-5.
- Smith, I.M., Griffiths, D.V. and Margetts, L. (2015), Programming the finite element method: Fifth Edition, Programming the finite element method: Fifth Edition.
- Sun, Z., Chen, J., Shen, W.Z. and Zhu, W.J. (2016), "Improved blade element momentum theory for wind turbine aerodynamic computations", Renew. Energ., 96, 824-831. https://doi.org/10.1016/j.renene.2016.05.035.
- Tahir, A., Elgabaili, M., Rajab, Z., Buaossa, N., Khalil, A. and Mohamed, F. (2018), "Optimization of small wind turbine blades using improved blade element momentum theory", Wind Eng., 43(3), 299-310. https://doi.org/10.1177/0309524X18791395.
- Thakur, S., Abhinav, K.A. and Saha, N. (2018), "Load mitigation using slotted flaps in offshore wind turbines", J. Offshore Mech. Arct., 140(6). https://doi.org/10.1115/1.4040234.
- Tian, D., Dai, S.M., Liu, S. and Wang, N.B. (2012), "Analysis of aerodynamic performance for wind turbine based on amended calculation of BEM theory", Adv. Mater. Res., 608-609, 775-780. https://doi.org/10.4028/www.scientific.net/AMR.608-609.775.
- Vesel, R.W. and McNamara, J.J. (2014), "Performance enhancement and load reduction of a 5 MW wind turbine blade", Renew. Energ., 66, 391-401. https://doi.org/10.1016/j.renene.2013.12.019.
- Wang, L., Liu, X. and Kolios, A. (2016), "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling", Renew. Sust. Energ. Rev., 64, 195-210. https://doi.org/10.1016/j.rser.2016.06.007.
- Wang, L., Liu, X., Renevier, N., Stables, M. and Hall, G.M. (2014), "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory", Energy, 76, 487-501. https://doi.org/10.1016/j.energy.2014.08.046.
- Wood, D.H. and Okulov, V.L. (2017), "Nonlinear blade elementmomentum analysis of Betz-Goldstein rotors", Renew. Energ., 107, 542-549. https://doi.org/10.1016/j.renene.2017.02.027.
- Zhou, J.W., Zhang, W., Jiang, X. and Zhai, E.D. (2022), "Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method", Renew. Energ., 188, 96-113. https://doi.org/10.1016/j.renene.2022.02.032.