DOI QR코드

DOI QR Code

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni (Department of Civil Engineering, Yokohama National University) ;
  • Hiroshi, Katsuchi (Department of Civil Engineering, Yokohama National University) ;
  • Hitoshi, Yamada (Department of Civil Engineering, Yokohama National University)
  • 투고 : 2021.12.06
  • 심사 : 2022.07.26
  • 발행 : 2022.11.25

초록

This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.

키워드

과제정보

The first author wishes to express his gratitude to the Indonesia Endowment Fund for Education (LPDP) for funding his studies at Yokohama National University in Japan.

참고문헌

  1. Abel, I. (1979), "An analytical technique for predicting the characteristics of a flexible wing equipped with an active flutter-suppression system and comparison with wind-tunnel data", NASA TP-1367.
  2. Andersen, M.S., Johansson, J., Brandt, A. and Hansen, S.O. (2016), "Aerodynamic stability of long span suspension bridges with low torsional natural frequencies", Eng. Struct., 120, 82-91. https://doi.org/10.1016/j.engstruct.2016.04.025.
  3. Boonyapinyo, V., Miyata, T. and Yamada, H. (1999), "Advanced aerodynamic analysis of suspension bridges by state-space approach", J. Struct. Eng., 125(12), 1357-1366. https://doi.org/10.1061/(asce)0733-9445(1999)125:12(1357).
  4. Cao, B. and Sarkar, P.P. (2010), "Identification of rational functions by forced vibration method for time-domain analysis of flexible structures", Proceedings of The 5th International Symposium on Computational Wind Engineering, North Carolina, USA, May.
  5. Cao, B. and Sarkar, P.P. (2012), "Identification of Rational Functions using two-degree-of-freedom model by forced vibration method", Eng. Struct. 43, 21-30. https://doi.org/10.1016/j.engstruct.2012.05.003.
  6. Cao, B. and Sarkar, P.P. (2013), "Extraction of rational functions by forced vibration method for time-domain analysis of longspan bridges", Wind Struct., 16(6). https://doi.org/10.12989/was.2013.16.6.561.
  7. Chen, X. and Kareem, A. (2004), "Efficacy of the implied approximation in the identification of flutter derivatives", J. Struct. Eng., 130(12), 2070-2074. https://doi.org/10.1061/(asce)0733-9445(2004)130:12(2070).
  8. Chowdhury, A.G. and Sarkar, P.P. (2005), "Experimental identification of rational function coefficients for time-domain flutter analysis", Eng. Struct., 27(9), 1349-1364. https://doi.org/10.1016/j.engstruct.2005.02.019.
  9. Consortium of China Contractor (2005), Wind Tunnel Study on Wind-resistant Performance of Suramadu Bridge in Indonesia, Review Design Report, Tongji University, Shanghai, China, October.
  10. Iwatani, Y. (1988), "Simulation of multidimensional wind fluctuations associated with given power spectra and cross spectra and its accuracy", Wind Engineers, JAWE, 36, 11-26. https://doi.org/10.5359/jawe.1988.36_11.
  11. Karpel, M. (1982), "Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling", J. Aircraft, 19(3), 221-227. https://doi.org/10.2514/3.57379.
  12. Katsuchi, H., Jones, N.P. and Scanlan, R.H. (1999), "Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge", J. Struct. Eng., 125(1), 60-70. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(60).
  13. Matsumoto, M. (1996), "Aerodynamic damping of prisms", J. Wind Eng. Ind. Aerod., 59(2-3), 159-175. https://doi.org/10.1016/0167-6105(96)00005-0.
  14. Neuhaus, C., Roesler, S., Hoeffer, R., Hortmanns, M. and Zahlten, W. (2009), "Identification of 18 fluter derivatives by forced vibration tests-a new experimental rig", Proceedings of the 5th European and African Conference on Wind Engineering, Florence, Italy, July.
  15. Nguyen, D.T., Katsuchi, H., Yamada, H. and Sasaki, E. (2008), "Effects of approximation of self-excited forces by rational function on wind-induced response of a long-span bridge", J. Struct. Eng., 54, 420-428. https://doi.org/10.11532/structcivil.54A.420.
  16. Poulsen, N.K., Damsgaard, A. and Reinhold, T.A. (1992), "Determination of flutter derivatives for the great belt bridge", J. Wind Eng. Ind. Aerod., 41(1-3), 153-164. https://doi.org/10.1016/0167-6105(92)90403-W.
  17. Ribeiro, F.A., Dowell, E.H. and Bueno, D.D. (2020), "Enhancement to least square-based approach for time-domain unsteady aerodynamic approximation", J. Aircraft, 1-14. https://doi.org/10.2514/1.c035824.
  18. Roger, K. (1977), "Airplane math modeling methods for active control design", AGARD-CP-228.
  19. Sarkar, P.P., Caracoglia, L., Haan, F.L., Sato, H. and Murakoshi, J. (2009), "Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, Part 1: Analysis of interlaboratory experimental data", Eng. Struct., 31(1), 158-169. https://doi.org/10.1016/j.engstruct.2008.07.020.
  20. Scanlan, R.H. (1978), "The action of flexible bridges under wind, I: Flutter theory", J. Sound Vib., 60(2), 187-199. https://doi.org/10.1016/S0022-460X(78)80028-5.
  21. Scot Sauder, H. and Sarkar, P. (2017), "A 3-DOF forced vibration system for time-domain aeroelastic parameter identification", Wind Struct., 24(5), 481-500. https://doi.org/10.12989/was.2017.24.5.481.
  22. Siedziako, B. and Oiseth, O. (2018), "An enhanced identification procedure to determine the rational functions and aerodynamic derivatives of bridge decks", J. Wind Eng. Ind. Aerod., 176, 131-142. https://doi.org/10.1016/j.jweia.2018.03.025.
  23. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: fundamentals and applications to design, 3 rd Ed., John Wiley & Sons, Inc., New York.
  24. Tiffany, S.H. and Adams, W.M. (1988), "Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces", NASA TP-2776.
  25. Wilde, K., Fujino, Y. and Masukawa, J. (1996), "Time domain modeling of bridge deck flutter", Structural Eng. / Earthquake Eng., Japan Society of Civil Engineers, 13, 93-104. https://doi.org/10.2208/jscej.1996.543_19.
  26. Yamada, H. and Miyata, T. (1997), "Introduction of a modal decomposition and reassemblage method for the multidimensional unsteady aerodynamic force measurement", J. Wind Eng. Ind. Aerod., 69-71, 769-775. https://doi.org/10.1016/S0167-6105(97)00204-3.