DOI QR코드

DOI QR Code

Sustainable controlled low-strength material: Plastic properties and strength optimization

  • Mohd Azrizal, Fauzi (School of Civil Engineering, College of Engineering, Universiti Teknologi MARA) ;
  • Mohd Fadzil, Arshad (School of Civil Engineering, College of Engineering, Universiti Teknologi MARA) ;
  • Noorsuhada Md, Nor (Centre for Civil Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus) ;
  • Ezliana, Ghazali (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia)
  • Received : 2021.10.10
  • Accepted : 2022.10.18
  • Published : 2022.12.25

Abstract

Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.

Keywords

Acknowledgement

The authors are thankful to Universiti Teknologi MARA, Cawangan Pulau Pinang, Pulau Pinang, Malaysia, for their support. Kapar Energy Power Plant, Malaysia, and KTK Concrete Sdn. Bhd., Malaysia, are acknowledged for providing the fly ash and crushed concrete waste, respectively, for the accomplishment of this study. The authors also would like to thank Muhammad Nasiruddin Ishak, Faiz Izzuddin Idris, Muaz Badri Mohd Najib, the anonymous reviewers, and the journal editor for their valuable comments and feedback.

References

  1. Abubakar, A.U., Baharudin, K.S. and Technology, I. (2012), "Potential use of malaysian thermal power plants", Int. J. Sustain. Constr. Eng. Technol., 3(2), 25-37.
  2. ACI 229R-13 (2013), Report on Controlled Low-Strength Materials, American Concrete Institute (ACI), 38800 Country Club Drive Farmington Hills, Ml 48331, U.S.A.
  3. Ahmad, S. and Alghamdi, S.A. (2014), "A statistical approach to optimizing concrete mixture design", Scientif. World J., 2014, Article ID 561539. https://doi.org/10.1155/2014/561539.
  4. Ahmadi-nedushan, B. (2009), "Estimation of concrete compressive strength using advanced multivariate statistical techniques", 8th International Congress on Civil Engineering.
  5. Ahmaruzzaman, M. (2010), "A review on the utilization of fly ash", Prog. Energy Combus. Sci., 36(3), 327-363. https://doi.org/10.1016/j.pecs.2009.11.003.
  6. Alizadeh, V. (2018), "Influence of cementing paste volume on properties of controlled low strength materials", J. Mater. Civil Eng., 30(3), 04017305. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002200.
  7. Alizadeh, V. (2019), "New approach for proportioning of controlled low strength materials", Constr. Build. Mater., 201, 871-878. https://doi.org/10.1016/j.conbuildmat.2018.12.041.
  8. Izekor, D.N., Amiandamhen, S.O. and Agbarhoaga, O.S. (2013), "Effects of geometric particle sizes of wood flour on strength and dimensional", J. Appl. Nat. Sci., 5(2), 194-199. https://doi.org/10.1016/j.indcrop.2016.09.051.
  9. An, J.H. and Jeon, S. (2017), "Optimized mix design of rapid-set lightweight-formed mortar for backfill", Int. J. Highw. Eng., 19(1), 1-9. https://doi.org/10.7855/IJHE.2017.19.1.001.
  10. ASTM C618-19 (2019), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, ASTM International, West Conshohocken, PA.
  11. ASTM C940-16 (2016), Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory, ASTM International West Conshohocken, PA.
  12. ASTM D 4832-16e1 (2016), Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders, ASTM International, West Conshohocken, PA.
  13. ASTM D5971/D5971M-16 (2016), Standard Practice for Sampling Freshly Mixed Controlled Low-Strength Material, ASTM International, West Conshohocken, PA.
  14. ASTM D6103/D6103M-17 (2017), Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM), ASTM International, West Conshohocken.
  15. Azmi, A.N., Fauzi, M.A., Nor, M.D., Ridzuan, A.R.M. and Arshad, M.F. (2016), "Production of controlled low strength material utilizing waste paper sludge ash and recycled aggregate concrete", MATEC Web Conf., 47, 1-8. https://doi.org/10.1051/matecconf/20164701011.
  16. Bassani, M., Bertola, F., Bianchi, M., Canonico, F. and Marian, M. (2017), "Environmental assessment and geomechanical properties of controlled low-strength materials with recycled and alternative components for cements and aggregates", Cement Concrete Compos., 80, 143-156. https://doi.org/10.1016/j.cemconcomp.2017.03.013.
  17. Bouzalakos, S., Dudeney, A.W.L. and Chan, B.K.C. (2013), "Formulating and optimising the compressive strength of controlled low-strength materials containing mine tailings by mixture design and response surface methods", Miner. Eng., 53, 48-56. https://doi.org/10.1016/j.mineng.2013.07.007.
  18. British Standards Institution (2013), BS EN 12620: Aggregates for Concrete.
  19. BS EN 12350-11:2010 (2010), Testing Fresh Concrete, Self-Compacting Concrete. Sieve segregation Test, British Standards Institution.
  20. BS EN 450-1 (2012), Fly Ash for Concrete Part 1 : Definition, Specifications and Conformity Criteria, British Standards Institution, 389 Chiswick High Road London, W4 4AL, UK.
  21. de Juan, M.S. and Gutierrez, P.A. (2009), "Study on the influence of attached mortar content on the properties of recycled concrete aggregate", Constr. Build. Mater., 23(2), 872-877. https://doi.org/10.1016/j.conbuildmat.2008.04.012.
  22. Design-Expert 13.0 (2021), Software for Design of Experiments, Stat-Ease Corporation, Minneapolis, USA.
  23. Do, T.M. and Kim, Y. (2016), "Engineering properties of controlled low strength material (CLSM) incorporating red mud", Int. J. Geo-Eng., 7(1), 7. https://doi.org/10.1186/s40703-016-0022-y.
  24. Elemam, W.E., Abdelraheem, A.H., Mahdy, M.G. and Tahwia, A.M. (2020), "Optimizing fresh properties and compressive strength of self-consolidating concrete", Constr. Build. Mater., 249, 118781. https://doi.org/10.1016/j.conbuildmat.2020.118781.
  25. Fauzi, M.A., Arshad, M.F. and Md Nor, N. (2021), "Statistical models to develop optimised controlled low-strength materials with wastepaper sludge ash", Constr. Build. Mater., 286, 122816. https://doi.org/10.1016/j.conbuildmat.2021.122816.
  26. Fauzi, M.A., Arshad, M.F., Md Nor, N. and Ghazali, E. (2022), "Modeling and optimization of properties for unprocessed-fly ash (u-FA) controlled low-strength material as backfill materials", Clean. Eng. Technol., 6, 100395. https://doi.org/10.1016/j.clet.2021.100395.
  27. Fauzi, M.A., Arshad, M.F., Md Nor, N. and Noordin, N.I. (2022), "CO2 emission and cost estimates of wastepaper sludge ash in controlled low-strength material towards sustainability", Structural Integrity Cases in Mechanical and Civil Engineering, 313-325. https://doi.org/10.1007/978-3-030-85646-5_23.
  28. Fauzi, M.A., Arshad, M.F., Nor, N.M. and Kiai, S. (2021), "Properties of controlled low-strength material mixes made from wastepaper sludge ash and recycled fine aggregate", Int. J. Integr. Eng., 13(7), 136-146. https://doi.org/10.30880/ijie.2021.13.07.017.
  29. Gabr, M. and Bowders, J.J. (2000), "Controlled low-strength material using fly ash and AMD sludge", J. Hazard. Mater., 76(2-3), 251-263. https://doi.org/10.1016/S0304-3894(00)00202-8.
  30. Gassman, S.L., Pierce, C.E. and Schroeder, A.J. (2001), "Effects of prolonged mixing and retempering on properties of Controlled Low-Strength Material (CLSM)", ACI Mater. J., 98(2), 194-199. https://doi.org/10.14359/10203.
  31. Hardjito, D.W., Chuan, C.W. and Taniwijaya, J. (2010), "Controlled Low Strength Materials (CLSM) utilizing fly ash as D bottom ash", The First Makassar International Conference on Civil Engineering (MICCE2010), 501-509.
  32. Howard, A.K. (1999), "The design and application of controlled low-strength materials (flowable fill)", ASTM Int., 156-162.
  33. Kaliyavaradhan, S.K., Li, L. and Ling, T. (2022), "Response surface methodology for the optimization of CO2 uptake using waste concrete powder", Constr. Build. Mater., 340, 127758. https://doi.org/10.1016/j.conbuildmat.2022.127758.
  34. Kaliyavaradhan, S.K., Ling, T.C.C., Guo, M.Z.Z. and Mo, K.H. (2019), "Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties", J. Environ. Manage., 241, 383-396. https://doi.org/10.1016/j.jenvman.2019.03.017.
  35. Kaliyavaradhan, S.K., Ling, T.C. and Guo, M.Z. (2022), "Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability", Environ. Sci. Pollut. Res., 29(12), 16799-16816. https://doi.org/10.1007/s11356-022-18511-9.
  36. Kaliyavaradhan, S.K., Ling, T.C. and Mo, K.H. (2020), "CO2 sequestration of fresh concrete slurry waste: Optimization of CO2 uptake and feasible use as a potential cement binder", J. CO2 Utiliz., 42, 101330. https://doi.org/10.1016/j.jcou.2020.101330.
  37. Katz, A. and Kovler, K. (2004), "Utilization of industrial by-products for the production of controlled low strength materials (CLSM)", Waste Manage., 24(5), 501-512. https://doi.org/10.1016/S0956-053X(03)00134-X.
  38. Kayri, M. (2016), "Predictive abilities of bayesian regularization and levenberg-marquardt algorithms in artificial neural networks: A comparative empirical study on social data", Math. Comput. Appl., 21(2), 20. https://doi.org/10.3390/mca21020020.
  39. Khan, A., Do, J. and Kim, D. (2016), "Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology", Comput. Concrete, 17(5), 629. https://doi.org/10.12989/cac.2016.17.5.629.
  40. Kim, Y. sang, Dinh, B.H., Do, T.M. and Kang, G.O. (2020), "Development of thermally enhanced controlled low-strength material incorporating different types of steel-making slag for ground-source heat pump system", Renew. Energy, 150, 116-127. https://doi.org/10.1016/j.renene.2019.12.129.
  41. Li, M.C., Chen, Y.S., Chan, Y.W. and Hoang, V.L. (2012), "A study of statistical models application for mixture of high-flowing concrete", J. Marine Sci. Technol. (Taiwan), 20(3), 325-335. https://doi.org/10.51400/2709-6998.1811.
  42. Ling, T.C., Kaliyavaradhan, S.K. and Poon, C.S. (2018), "Global perspective on application of controlled low-strength material (CLSM) for trench backfilling-An overview", Constr. Build. Mater., 158, 535-548. https://doi.org/10.1016/j.conbuildmat.2017.10.050.
  43. Mangi, S.A., Memon, Z.A., Khahro, S.H., Memon, R.A. and Memon, A.H. (2020), "Potentiality of industrial waste as supplementary cementitious material in concrete production", Int. Rev. Civil Eng., 11(5), 214-221. https://doi.org/10.15866/irece.v11i5.18779.
  44. Meade, B.W., Hunsucker, D.Q. and Stone, M.D. (1993), "Evaluation of CLSM (Flowable Fill) for trench backfill", Kentucky Transportation Center Research, University of Kentucky. https://doi.org/10.13023/KTC.RR.1993.05.
  45. Mneina, A., Ahmed, A. and El Naggar, M.H. (2018), "Dynamic properties of controlled low-strength materials with treated oil sand waste", J. Mater. Civil Eng., 30(9), 04018204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002338.
  46. Mohammed, M.K., Al-Hadithi, A.I. and Mohammed, M.H. (2019), "Production and optimization of eco-efficient self compacting concrete SCC with limestone and PET", Constr. Build. Mater., 197, 734-746. https://doi.org/10.1016/j.conbuildmat.2018.11.189.
  47. Mohd Ridzuan, A.R., Fauzi, M.A., Ghazali, E., Arshad, M.F. and Mohd Fauzi, M.A. (2011), "Strength assessment of controlled low strength materials (CLSM) utilizing recycled concrete aggregate and waste paper sludge ash", 2011 IEEE Colloquium on Humanities, Science and Engineering, Chuser, 208-211.
  48. Montgomery, D.C. (2017), Design and Analysis of Experiments, Ed. N. Hoboken, 9th Edition, John Wiley & Sons, Inc.
  49. Murali, T.M. and Kandasamy, S. (2009), "Mix proportioning of high performance self-compacting concrete using response surface methodology", Open Civil Eng. J., 3(1), 93-97. https://doi.org/10.2174/1874149500903010093.
  50. Naganathan, S., Razak, H.A. and Hamid, S.N.A. (2012), "Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust", Mater. Des., 33(1), 56-63. https://doi.org/10.1016/j.matdes.2011.07.014.
  51. Naik, T.R., Ramme, B.W., Kolbeck, H., Sohns, L.E. and Ramme, B.W. (1991), "Controlled low strength material (CLSM) produced with high-lime fly ash", International Conference on the Utilization of Fly Ash and Other Coal Combustion By-Products, Shanghai, China, 110-111.
  52. Neville, A.M. (2013), Properties of Concrete, Fifth Edition, Pitman Publishing, London.
  53. Poon, C.S., Qiao, X.C. and Lin, Z.S. (2003), "Pozzolanic properties of reject fly ash in blended cement pastes", Cement Concrete Res., 33(11), 1857-1865. https://doi.org/10.1016/S0008-8846(03)00213-8.
  54. Qian, J., Shu, X., Dong, Q., Ling, J. and Huang, B. (2015), "Laboratory characterization of controlled low-strength materials", Mater. Des., 65, 806-813. https://doi.org/10.1016/j.matdes.2014.10.012.
  55. Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M.W. and Khankhaje, E. (2016), "Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement", Constr. Build. Mater., 116, 15-24. https://doi.org/10.1016/j.conbuildmat.2016.04.080.
  56. Raghavendra, T., Sunil, M. and Udayashankar, B.C. (2016), "Controlled low-strength materials using bagasse ash and fly ash", ACI Mater. J., 113(4), 447. https://doi.org/10.14359/51688987.
  57. Serpell, R., Henschen, J., Roesler, J. and Lange, D. (2015), "Relative proportioning method for controlled low-strength material", ACI Mater. J., 112(2), 179-188. https://doi.org/10.14359/51687226.
  58. Shanker, R. and Sachan, A.K. (2014), "Concrete mix design using artificial neural network", Int. J. Civil Arch. Struct. Constr. Eng., 8(8), 867-870. https://doi.org/10.15415/jotitt.2013.11003.
  59. Sheen, Y.N.N., Zhang, L.H.H. and Le, D.H.H. (2013), "Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement", Constr. Build. Mater., 48, 822-829. https://doi.org/10.1016/j.conbuildmat.2013.07.046.
  60. Sonebi, M. (2004), "Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans", Cement Concrete Res., 34(7), 1199-1208. https://doi.org/10.1016/j.cemconres.2003.12.022.
  61. Sonebi, M., Grunewald, S. and Walraven, J. (2007), "Filling ability and passing ability of self-consolidating concrete", ACI Mater. J., 104(2), 162-170. https://doi.org/10.14359/18579.
  62. Tang, C.W. and Cheng, C.K. (2019), "Partial replacement of fine aggregate using water purification sludge in producing CLSM", Sustain., 11(5), 1351. https://doi.org/10.3390/su11051351.
  63. Tikalsky, P.J., Bahia, H.U., Deng, A. and Snyder, T. (2004), "Excess foundry sand characterization and experimental investigation in controlled low-strength material and hot-mixing asphalt", Office of Scientific and Technical Information (OSTI).
  64. Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A. and Pokomeda, K. (2014), "Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process", Biores. Technol., 160, 150-160. https://doi.org/10.1016/j.biortech.2014.01.021.
  65. Wu, H., Huang, B., Shu, X. and Yin, J. (2016), "Utilization of solid wastes/byproducts from paper mills in Controlled Low Strength Material (CLSM)", Constr. Build. Mater., 118, 155-163. https://doi.org/10.1016/j.conbuildmat.2016.05.005.
  66. Yao, Y. and Sun, H. (2012), "A novel silica alumina-based backfill material composed of coal refuse and fly ash", J. Hazard. Mater., 213-214, 71-82. https://doi.org/10.1016/j.jhazmat.2012.01.059.