DOI QR코드

DOI QR Code

Experimental and numerical study on pre-cambered deep deck-plate system

  • Seung-Ho, Choi (Department of Architectural Engineering, University of Seoul) ;
  • Inwook, Heo (Department of Architectural Engineering, University of Seoul) ;
  • Khaliunaa, Darkhanbat (Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul) ;
  • Sung-Mo, Choi (Department of Architectural Engineering, University of Seoul) ;
  • Kang Su, Kim (Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul)
  • Received : 2022.09.02
  • Accepted : 2022.11.10
  • Published : 2022.12.25

Abstract

A pre-cambered deep deck-plate system has been developed that can realize a long span by offsetting the deflection caused by a construction load. In this study, finite element (FE) analysis is performed to examine the preload-camber relationship introduced into a deck and calculate the deflection reflecting the ponding effect that arises during concrete pouring. The FE analysis results showed that the stress of the bottom plate was half of the yield stress when the pre-camber of approximately 30 mm was introduced. Based on the FE results, a full-scale deep deck-plate is fabricated, a pre-camber is introduced, and concrete is poured to measure deflection. A deflection calculation formula that reflects the ponding effect is proposed, and the deflections yielded by the proposed model, experimental results, and FE results are compared. Results show that the proposed model can accurately estimate the deflection of non-supported deep deck-plate systems after concrete is poured.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. 2021R1A4A1031201) for Sung-Mo Choi and Seung-Ho Choi. Also, this research was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2022) for Inwook Heo, Khaliunaa Darkhanbat, and Kang Su Kim.

References

  1. Abandah, M.R. and Issa, M.A. (2022), "Influence of reinforcement parameters on punching shear capacity of laterally restrained FRP-reinforced concrete bridge deck slabs", Struct., 41, 434-446. https://doi.org/10.1016/j.istruc.2022.04.074.
  2. Adam, C.Y. and Milner, H.R. (2012), "Wood-based prefabricated composite-acting bridge deck", J. Bridge Eng., 17(2), 363-370. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000242.
  3. Al-Rousan, R.Z. (2022), "Impact of elevated temperature on the behavior of full-scale concrete bridge deck slabs reinforced with GFRP bars", Struct., 43, 621-634. https://doi.org/10.1016/j.istruc.2022.06.079.
  4. Al-Rousan, R.Z., Alhassan, M. and Al-wadi, R. (2020), "Nonlinear finite element analysis of full-scale concrete bridge deck slabs reinforced with FRP bars", Struct., 27, 1820-1831. https://doi.org/10.1016/j.istruc.2020.08.024.
  5. Altoubat, S., Ousmane, H. and Barakat, S. (2015), "Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs", Steel Compos. Struct., 19(1), 153-171. https://doi.org/10.12989/scs.2015.19.1.153.
  6. ANSI/ASCE 3-91 and 9-91 (1994), Standard for the Structural Design of Composite Slabs and Standard Practice for Construction and Inspection of Composite Slabs, American Society of Civil Engineers.
  7. Brice, R., Seguirant, S.J., Mizumori, A. and Khaleghi, B. (2020), "Fabrication and design of precambered precast, prestressed concrete bridge girders", PCI J., 65(3), 64-77. https://doi.org/10.15554/pcij65.3-02.
  8. BS 5950-4 (1994), Structural Use of Steelwork in Building-Part 4: Code of Practice for Design of Composite Slabs with Profiled Steel Sheeting.
  9. Deng, P.R., Kakuma, K., Mitamura, H. and Matsumoto, T. (2020), "Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC", Struct. Eng. Mech., 75(1), 19-32. https://doi.org/10.12989/sem.2020.75.1.019.
  10. Heo, I.W., Han, S.J., Choi, S.H., Kim, K.S. and Kim, S.B. (2019), "Experimental study on structural behavior of double ribbed deep-deck plate under construction loads", J. Korea Inst. Struct. Mainten. Inspect., 23(7), 49-57. https://doi.org/10.11112/jksmi.2019.23.7.49.
  11. Jeon, S.H., Kyung, J.H., Kim, Y.H., Choi, S.M. and Yang, I.S. (2015), "Deflection evaluation of the constructing-load carrying capacity for deep decking floor system reinforced with both ends cap plates", J. Korean Soc. Steel Constr., 27(2), 155-167. (in Korean) https://doi.org/10.7781/kjoss.2015.27.2.155.
  12. Lee, S.J., Shin, H.J. and Park, C.G. (2021), "Mechanical and durability properties of latex-modified hybrid fiber-reinforced roller-compacted rapid-set cement concrete for pavement repair", Mater., 14(14), 3981. https://doi.org/10.3390/ma14143981.
  13. Liu, R., Yang, Y. and Zhou, X. (2018), "Experimental study on fatigue performance of composite beam with steel-plate-concrete composite decks", Constr. Build. Mater., 188(10), 833-849. https://doi.org/10.1016/j.conbuildmat.2018.08.108.
  14. Nerantzaki, M.S. and Katsikadelis, J.T. (2003), "Ponding on floating membranes", Eng. Anal. Bound. Elem., 27(6), 589-596. https://doi.org/10.1016/S0955-7997(02)00114-5.
  15. Pan, W.H., Fan, J.S., Nie, J.G., Hu, J.H. and Cui, J.F. (2016), "Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer", J. Bridge Eng., 21(10), 04016064. https://doi.org/10.1061/(ASCE)BE.1943-5592 .0000935.
  16. Park, K.Y., Nam. Y.S., Choi, Y.H., Kim. Y.H. and Choi. S.M. (2013), "Improvement of flexural performance for deep-deck plate using cap plate", J. Korean Soc. Steel Constr., 25(5), 555-567. (in Korean) https://doi.org/10.7781/kjoss.2013.25.5.555.
  17. Qi, J.N., Wang, J.Q. and Feng, Y. (2019), "Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate", Adv. Concrete Constr., 7(4), 219-229. https://doi.org/10.12989/acc.2019.7.4.219.
  18. Shabani, R., Tariverdilo, S., Salarieh, H. and Rezazadeh, G. (2010), "Importance of the flexural and membrane stiffness in large deflection analysis of floating roofs", Appl. Math. Model., 34(9), 2426-2436. https://doi.org/10.1016/j.apm.2009.11.008.
  19. Shaker, F. and Rahai, A. (2022), "Effect of a two bearing lines deck on the bridge substructure", Struct. Eng. Mech., 81(2), 117-129. https://doi.org/10.12989/sem.2022.81.2.117.
  20. Shao, X., Yi, D., Huang, Z., Zao, H., Chen, B. and Lie, M. (2013), "Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer", J. Bridge Eng., 18(5), 417-428. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000348.
  21. Shin, J., Lee, J., Lee, Y. and Kim, B. (2019), "Experimental and numerical investigation on structural performance of steel deck plate bolted with truss girder", Appl. Sci., 9(15), 3166. https://doi.org/10.3390/app9153166.
  22. Sirimontree, S., Thongchom, C., Keawsawasvong, S., Nuaklong, P., Jongvivatsakul, P., Dokduea, W., Bui, L.V.H. and Farsangi, E.N. (2021), "Experimental study on the behavior of steel-composite decks with different shear span-to-depth ratios", Build., 11(12), 624. https://doi.org/10.3390/buildings11120624.
  23. Smith, M. (2009), ABAQUS/Standard User's Manual, Version 6.9, Dassault Systemes Simulia Corp., Providence, RI, USA.
  24. Son, D.H., Ahn, H.J., Chung, J.H., Bae, B.I. and Choi, C.S. (2021), "Deflection estimation based on the thermal characteristics of composite deck slabs containing macrosynthetic fibers", Mater., 14(14), 4052. https://doi.org/10.3390/ma14144052.
  25. Son, D.H., Bae, B.I., Lee, M.S., Lee, M.S. and Choi, C.S. (2021), "Flexural strength of composite deck slab with macro synthetic fiber reinforced concrete", Appl. Sci., 11(4), 1662. https://doi.org/10.3390/app11041662.
  26. Thongchom, C., Refahati, N., Saffari, P.R., Saffari, P.R., Niyaraki, M.N., Sirimmontree, S. and Keawsawasvong, S. (2021), "An experimental study on the effect of nanomaterials and fibers on the mechanical properties of polymer composites", Build., 12(1), 7. https://doi.org/10.3390/buildings12010007.
  27. Walter, R., Olesen, J.F., Stang, H. and Vejrum, T. (2007), "Analysis of an orthotropic deck stiffened with a cement-based overlay", J. Bridge Eng., 12(3), 350-363. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(350).
  28. Xia, Y., Chen L.M., Ma, H.Y. and Su, D. (2019), "Experimental and numerical study on shear studs connecting steel girder and precast concrete deck", Struct. Eng. Mech., 71(4), 433-444. 10.12989/sem.2019.71.4.433.
  29. Zhao, C., Wang, K., Xu, R., Deng, K. and Cui, B. (2019), "Development of fully prefabricated steel-UHPC composite deck system", J. Struct. Eng., 145(7), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002338.