DOI QR코드

DOI QR Code

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali (Department of Civil Engineering, Yildiz Technical University)
  • 투고 : 2022.02.09
  • 심사 : 2022.06.28
  • 발행 : 2022.12.25

초록

The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.

키워드

참고문헌

  1. Ahmad, A., Khan, Q.Z. and Raza, A. (2020a), "Reliability analysis of strength models for CFRP-confined concrete cylinders". Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  2. Ahmad, A., Plevris, V. and Khan, Q.Z. (2020b), "Prediction of properties of FRP-confined concrete cylinders based on artificial neural networks", Crystal., 10(9), 811. https://doi.org/10.3390/cryst10090811.
  3. Aire, C., Gettu, R. and Casas, J.R. (2001), "Study of the compressive behavior of concrete confined by fiber reinforced composites", Proceedings International Conference on Composites in Constructions, A.A. Balkema Publishers, Lisse, The Netherlands.
  4. Benzaid, R., Mesbah, H. and Chikh, N. (2010), "FRP-confined concrete cylinders: Axial compression experiments and strength model", J. Reinf. Plast. Compos., 29(16), 2469-8248. https://doi.org/10.1177/0731684409355199.
  5. Berthet, J.F., Ferrier, E. and Hamelin, P. (2005), "Compressive behavior of concrete externally confined by composite jackets, Part A, experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
  6. Bisby, L., Take, W.A. and Caspary, A. (2007), "Quantifying strain variation FRP confined using digital image correlation: proofof-concept and initial results", Asia-Pacific Conference on FRP in Structures.
  7. Bisby, L.A., Dent, A.J.S. and Green, M.F. (2005), "Comparison of confinement models for fiber-reinforced polymer-wrapped concrete", ACI Struct. J., 102(1), 62-72. https://doi.org/10.14359/13531.
  8. Bullo, S. (2003), "Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete", Proceedings International Conference on Composites in Construction, Cosenza, Italy.
  9. Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
  10. Cevik, A. (2011), "Modeling strength enhancement of FRP confined concrete cylinders using soft computing", Exp. Syst. Appl. 38(5), 5662-5673. https://doi.org/10.1016/j.eswa.2010.10.069.
  11. Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders", Ad. Eng. Softw., 41, 527-536. https://doi.org/10.1016/j.advengsoft.2009.10.015.
  12. Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.
  13. De Lorenzis, L., Micelli, F. and La Tegola, A. (2002), "Influence of specimen size and resin type on the behavior of FRP-confined concrete cylinders", Proceedings 1 st International Conference on Advanced Polymer Composites for Structural Applications in Construction, Thomas Telford, London, UK.
  14. Demers, M. and Neale, K.W. (1994), "Strengthening of concrete columns with unidirectional composite sheets", Proceedings 4th International Conference on Short and Medium Span Bridges, Montreal, Canada.
  15. Dias da Silva, V. and Santos, J.M.C. (2001), "Strengthening of axially loaded concrete cylinders by surface composites", Proceedings International Conference on Composites in Constructions, Lisse, The Netherlands.
  16. Du, J., Ma, H., Sun, D. and Pan, P. (2022), "Data driven strength and strain enhancement model for FRP confined concrete using Bayesian optimization", Struct., 41, 1345-1358. https://doi.org/10.1016/j.istruc.2022.05.093.
  17. Evans, J., Kocman, M. and Kretschmer, T. (2008), "Hybrid FRP confined concrete columns", Honours, The School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Australia.
  18. Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129. https://doi.org/10.48550/arXiv.cs/0102027.
  19. Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Indus., 635-653. https://doi.org/10.1007/978-1-4471- 0123-9_54.
  20. Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd Edition, Revised and Extended Edition, Springer.
  21. Gandomi, A.H., Alavi, A.H. and Ryan, C. (2015), Handbook of Genetic Programming Applications, Springer.
  22. Gepsoft GeneXproTools 5 (2022), Data Modeling & Analysis Software, https://www.gepsoft.com.
  23. Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
  24. Ilki, A., Kumbasar, N. and Koc, V. (2002), "Strength and deformability of low strength concrete confined by carbon fibre composite sheets", Proceedings 15th Engineering Mechanical Conference, Columbia University, New York.
  25. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
  26. Jalal, M. (2015), "Soft computing techniques for compressive strength prediction of concrete cylinders strengthened by CFRP composites", Sci. Eng. Compos. Mater., 22(1), 97-112. https://doi.org/10.1515/secm-2013-0240.
  27. Jalal, M. and Ramezanianpour, A.A. (2012), "Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks", Compos. Part B Eng., 43, 2990-3000. https://doi.org/10.1016/j.compositesb.2012.05.044.
  28. Jiang, T. and Teng, J.G. (2007), "Analysis-oriented models for FRP-confined concrete: A comparative assessment", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  29. Keshtegar, B., Gholampour, A., Thai, D.K., Taylan, O. and Trung, N.T. (2021), "Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete", Compos. Struct., 262, 113644. https://doi.org/10.1016/j.compstruct.2021.113644.
  30. Kono, S., Inazuni, M. and Kaku, T. (1998), "Evaluation of confining effects of CFRP sheets on reinforced concrete members", Proceedings 2nd International Conference on Composites in Infrastructures.
  31. Lam, L. and Teng, J.G. (2002), "Strength models for fiber-reinforced plastic-confined concrete", ASCE J. Struct. Eng., 128(5), 612-623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612).
  32. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1177/0731684403035429.
  33. Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
  34. Lam, L., Teng, J.G., Cheung, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
  35. Liang, M., Wu, Z.M., Ueda, T., Zheng, J.J. and Akogbe1, R. (2012), "Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes", J. Reinf. Plast. Compos., 31(6), 389-403. https://doi.org/10.1177/0731684412439347.
  36. Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
  37. Lin, H.J. and Chen, C.T. (2001), "Strength of concrete cylinder confined by composite materials", J. Reinf. Plast. Compos., 20(18), 1577-600. https://doi.org/10.1177/2F073168401772679066.
  38. Lin, S., Zhao, Y.G., Li., J. and Lu., Z.H. (2020), "Confining stress path-based compressive strength model of axially loaded FRP-confined columns", J. Compos. Constr., 25(1), 1-14. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001090.
  39. Mansouri, I., Kisi, O., Sadeghian, P., Lee, C.H. and Hu, J.W. (2017), "Prediction of ultimate strain and strength of FRP-confined concrete cylinders using soft computing methods", Appl. Sci., 7(8), 751. https://doi.org/10.3390/app7080751.
  40. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2006), "Axial load behavior of large scale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258-267. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123).
  41. Micelli, F., Myers, J.J. and Murthy, S. (2001), "Effect of environmental cycles on concrete cylinders confined with FRP", Proceedings International Conference on Composites in Constructions, A.A. Balkema Publishers, Lisse, The Netherlands.
  42. Mirmiran, A. (1996), "Analytical and experimental investigation of reinforced concrete columns encased in fiberglass tubular jackets and use of fiber jacket for pile splicing", Contract No. B-9135, Florida Department of Transport, Tallahassee, FL.
  43. Miyauchi, K., Inoue, S., Kuroda, T. and Kobayashi, A. (1999), "Strengthening effects with carbon fiber sheet for concrete column", Proc. JPN Concrete Inst., 21(3), 1453-1458.
  44. Modarelli, R., Micelli, F. and Manni, O. (2005), "FRP-confinement of hollow concrete cylinders and prisms", Proceedings 7th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-7), NO. SP-230, American Concrete Institute, Farmington, MI, 1029-1046.
  45. Naderpoura, H., Nagaib, K., Fakhariana, P. and Haji, M. (2019), "Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods", Compos. Struct., 215, 69-84. https://doi.org/10.1016/j.compstruct.2019.02.048.
  46. Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks". Comput. Concrete, 8, 597-616. https://doi.org/10.12989/cac.2011.8.5.597.
  47. Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model", Compos. Part B: Eng., 55, 607-634. https://doi.org/10.1016/j.compositesb. 2013.07.025.
  48. Pessiki, S., Harries, K.A., Kestner, J., Sause, R. and Ricles, J.M. (2001), "The axial behavior of concrete confined with fiber reinforced composite jackets", ASCE J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).
  49. Picher, F., Rochette, P. and Labossiere, P. (1996), "Confinement of concrete cylinders with CFRP", Proceedings 1st International Conference on Composites in Infrastructure, Tucson, Arizona.
  50. Pour, A.F., Ozbakkaloglu, T. and Vincent, T. (2018), "Simplified design-oriented axial stress strain model for FRP-confined normal- and high-strength concrete", Eng. Struct., 175, 501-516. https://doi.org/10.1016/j.engstruct.2018.07.099.
  51. Purba, B.K. and Mufti, A.A. (1999), "Investigation of the behavior of circular concrete columns reinforced with carbon fiber reinforced polymer (CFRP) jackets", Can. J. Civil Eng., 26(5), 590-596. https://doi.org/10.1139/cjce-26-5-590.
  52. Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Compos. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).
  53. Rousakis, T. and Tepfers, R. (2004), "Behavior of concrete confined by high E-modulus carbon FRP sheets, subjected to monotonic and cyclic axial compressive load", Nordic Concrete Res. J., 31(1), 73-82. https://www.researchgate.net/publication/236343365.
  54. Saenz, N. and Pantelides, C.P. (2006), "Short and medium term durability evaluation of FRP-confined circular concrete", ASCE J. Compos. Constr., 10(3), 244-253. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(244).
  55. Saiidi, M.S., Sureshkumar, K. and Pulido, C. (2005), "Simple carbon-fiber-reinforced-plasticconfined concrete model for moment-curvature analysis", ASCE J. Compos. Constr., 9(1), 101-104. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(101).
  56. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", ASCE J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
  57. Shahmansouri, A.A., Bengar, H.A. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
  58. Shehata, I.A.E.M., Carneiro, L.A.V. and Shehata, L.C.D. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35, 50-58. https://doi.org/10.1007/BF02482090.
  59. Smith, S.T., Kim, S.J. and Zhang, H. (2010), "Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders", J. Compos. Constr., 14(5), 573-582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119.
  60. Song, X., Gu, X., Li, Y., Chen, T. and Zhang, W. (2013), "Mechanical behavior of FRP-strengthened concrete columns subjected to concentric and eccentric compression loading", J. Compos. Constr., 17(3), 336-346. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000351.
  61. Tamuzs, V., Tepfers, R. and Sparnins, E. (2006), "Behavior of concrete cylinders confined by carbon composite 2.prediction of strength". Mech. Compos. Mater., 42(2), 109-118. https://doi.org/10.1007/s11029-006-0022-7.
  62. Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Struct., 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
  63. Theriault, M. and Neale, K.W. (2000), "Design equations for axially loaded reinforced concrete columns strengthened with FRP wraps", Can. J. Civil Eng., 27(5), 1011-1020. https://doi.org/10.1139/cjce-27-5-1011.
  64. Toutanji, H. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404.
  65. Toutanji, H. and Deng, Y. (2001), "Performance of concrete columns strengthened with fiber reinforced polymer composite sheets", Adv. Compos. Mater., 10(2-3), 159-168. https://doi.org/10.1163/156855101753396636.
  66. Valdmanis, V., De Lorenzis, L., Rousakis, T. and Tepfers, R. (2007), "Behaviour and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load", Struct. Concrete, 8(4), 187-190. https://doi.org/10.1680/stco.2007.8.4.187
  67. Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete", Constr. Build. Mater., 47, 814-826. http://doi.org/10.1016/j.conbuildmat.2013.05.085.
  68. Wang, L.M. and Wu, Y.F. (2008), "Effect of corner radius on the performance of CFRP- confined square concrete columns: Test", Eng. Struct., 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016.
  69. Wang, P. and Cheong, K.K. (2001), "RC columns strengthened by FRP under uniaxial compression", Proceedings International Conference on FRP Composites in Civil Engineering, Oxford, UK.
  70. Wang, Z., Wanga, D., Smith, S.T. and Lu, D. (2012), "Experimental testing and analytical modeling of CFRP-confined large circular RC columns subjected to cyclic axial compression", Eng. Struct., 40, 64-74. https://doi.org/10.1016/j.engstruct.2012.01.004.
  71. Watanable, K., Nakamura, H., Honda, T., Toyoshima, M., Iso, M., Fujimaki, T., Kaneto, M. and Shirai, N. (1997), "Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression", Proceedings 3rd International Symposium on Non-Metallic FRP Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan.
  72. Wei, Y., Zhang, X., Wu, G. and Zhou, Y. (2018), "Behaviour of concrete confined by both steel spirals and fiber-reinforced polymer under axial load", Compos. Struct., 192, 577-591. https://doi.org/10.1016/j.compstruct.2018.03.041.
  73. Wu, Y.F. and Jiang, J.F. (2013), "Effective strain of FRP for confined circular concrete columns", Compos. Struct., 95, 479-491. https://doi.org/10.1016/j.compstruct.2012.08.021.
  74. Wu, Y.F. and Wang, L. (2009), "Unified strength model for square and circular concrete columns confined by external jacket", ASCE J. Struct. Eng., 135(3), 253-261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253.
  75. Wu, Y.F. and Zhou, Y. (2010), "Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP", ASCE J. Compos. Constr., 14(2), 175-184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062.
  76. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
  77. Xiao, Y. and Wu, H. (2003), "Compressive behavior of concrete confined by various types of FRP composites jackets", J. Reinf. Plast. Compos., 22(13), 1187-11202. https://doi.org/10.1177/0731684403035430.
  78. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020.
  79. Zeng, J.J., Guo, Y.C., Gao, W.Y. and Chen, W.P. (2018), "Stressstrain behavior of concrete in circular concrete columns partially wrapped with FRP strips", Compos. Struct., 200, 810-828. https://doi.org/10.1016/j.compstruct.2018.05.001.
  80. Zhou, Y., Zheng, Y., Sui, L., Xing, F., Hu, J. and Li, P. (2019), "Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression", Compos. Part B: Eng., 162, 289-302. https://doi.org/10.1016/j.compositesb.2018.10.087.