DOI QR코드

DOI QR Code

COEFFICIENT ESTIMATES FOR GENERALIZED LIBERA TYPE BI-CLOSE-TO-CONVEX FUNCTIONS

  • Serap, Bulut (Kocaeli University Faculty of Aviation and Space Sciences)
  • Received : 2022.04.25
  • Accepted : 2022.10.25
  • Published : 2022.12.30

Abstract

In a recent paper, Sakar and Güney introduced a new class of bi-close-to-convex functions and determined the estimates for the general Taylor-Maclaurin coefficients of functions therein. The main purpose of this note is to give a generalization of this class. Also we point out the proof by Sakar and Güney is incorrect and present a correct proof.

Keywords

References

  1. O. Altintas, H. Irmak, S. Owa and H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20 (2007), 1218-1222.  https://doi.org/10.1016/j.aml.2007.01.003
  2. H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179-222.  https://doi.org/10.1016/j.bulsci.2005.10.002
  3. H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343-367.  https://doi.org/10.1016/S0007-4497(02)01115-6
  4. D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31 (2) (1986), 70-77. 
  5. S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R., Math., Acad. Sci. Paris 352 (6) (2014), 479-484.  https://doi.org/10.1016/j.crma.2014.04.004
  6. S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (6) (2016), 1567-1575.  https://doi.org/10.2298/FIL1606567B
  7. S. Bulut, A new comprehensive subclass of analytic bi-close-to-convex functions, Turk. J. Math. 43 (3) (2019), 1414-1424.  https://doi.org/10.3906/mat-1902-21
  8. S. Bulut, Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca 71 (6) (2021), 1401-1410.  https://doi.org/10.1515/ms-2021-0060
  9. S. Bulut, Coefficient estimates for functions associated with vertical strip domain, Commun. Korean Math. Soc. 37 (2) (2022), 537-549. 
  10. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983. 
  11. G. Faber, Uber polynomische Entwickelungen , Math. Ann. 57 (3) (1903) 389-408.  https://doi.org/10.1007/BF01444293
  12. H.O. Guney, G. Murugusundaramoorthy and H.M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Result. Math. 74 (3) (2019), Paper No. 93. 
  13. S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 17-20.  https://doi.org/10.1016/j.crma.2013.11.005
  14. S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc. 41 (5) (2015), 1103-1119. 
  15. J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. 2013, Art. ID 190560, 4 pp. 
  16. J.M. Jahangiri, S.G. Hamidi and S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37 (3) (2014), 633-640. 
  17. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185 (1953). 
  18. R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158.  https://doi.org/10.1215/S0012-7094-64-03114-X
  19. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975. 
  20. M.S. Robertson, On the theory of univalent functions, Ann. of Math. (Ser. 1) 37 (1936), 374-408.  https://doi.org/10.2307/1968451
  21. F.M. Sakar and H.O. Guney, Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turkish J. Math. 41 (2017), 888-895.  https://doi.org/10.3906/mat-1605-117
  22. F.M. Sakar and H.O. Guney, Faber polynomial coefficient bounds for analytic bi-close-to-convex functions defined by fractional calculus, J. Fract. Calc. Appl. 9 (1) (2018), 64-71. 
  23. H.M. Srivastava and S.M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math. 5 (6) (2020), 7087-7106.  https://doi.org/10.3934/math.2020454
  24. H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.  https://doi.org/10.1016/j.aml.2010.05.009
  25. P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), 268-276.  https://doi.org/10.1016/0022-247x(91)90193-4
  26. Z.-G. Wang and S. Bulut, A note on the coefficient estimates of bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 355 (2017), 876-880.  https://doi.org/10.1016/j.crma.2017.07.014
  27. A. Zireh, E.A. Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc.-Simon Stevin 23 (4) (2016), 487-504.