DOI QR코드

DOI QR Code

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • 투고 : 2021.10.11
  • 심사 : 2022.11.18
  • 발행 : 2022.12.25

초록

This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

키워드

참고문헌

  1. Adhikary, R. and Mandal, K.K. (2018), "Dynamic analysis of water storage tank with rigid block at bottom", Ocean Syst. Eng., 8(1), 57-77. https:// doi.org/10.12989/ose.2018.8.1.057.
  2. Attarnejada, R. and Bagheri, A. (2011), "Dam-reservoir interaction including the effect of vertical component of earthquake acceleration on hydrodynamic pressure", Adv. Mater. Res., 255-260, 3493-3499. https://doi.org/10.4028/www.scientific.net/AMR.255-260.3493.
  3. Barzegar, M. and Palaniappan, D. (2020), "Numerical study on the performance of semicircular and rectangular submerged breakwaters", Ocean Syst. Eng., 10(2), 201-226. https://doi.org/10.12989/ose.2020.10.2.201.
  4. Bouaanani, N., Paultre, P. and Proulx, J. (2003), "A closed-form formulation for earthquake-induced hydrodynamic pressure on gravity dams", J. Sound Vib., 261, 573-582. https://doi.org/10.1016/S0022-460X(02)01257-9
  5. Calayir, Y., Dumanoglu, A.A. and Bayraktar, A. (1996), "Earthquake analysis of gravity dam-reservoir systems using the eulerian and lagrangian approaches", Comput. Struct., 59(5), 877-890. https://doi.org/10.1016/0045-7949(95)00309-6.
  6. Eftekhari, S.A. and Jafari, A.A. (2018), "A ritz procedure for transient analysis of dam-reservoir interaction", Iran J. Sci. Technology Trans. Civil Eng.
  7. Gogoi, I. and Maity, D. (2006), "A non-reflecting boundary condition for the finite element modelling of infinite reservoir with layered sediment", Adv. Water Resour., 29(10), 1515-1527. https://doi.org/10.1016/j.advwatres.2005.11.004.
  8. Hall, J.F. and Chopra, A.K. (1982), "Two-dimensional dynamic analysis of concrete gravity and embankment dams including hydrodynamic effects", Earthq. Eng. Struct. D., 10(2), 305-332. https://doi.org/10.1002/eqe.4290100211.
  9. Humaish, A.H., Shamkhi, M.S., Al-Hachami, T.K. and Sc, B. (2018), "Seismic performance of concrete dam-reservoir system", Int. J. Eng. Technol., 7(4), 4873-4879.
  10. Humar, J. and Roufaiel, M. (1983), "Finite element analysis of reservoir vibration", J. Eng. Mech., 109, 215-230. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(215)
  11. Khaivi, M.P. and Sari, A. (2021), "Evaluation of hydrodynamic pressure distribution in reservoir of concrete gravity dam under vertical vibration using an analytical solution'', Math. Problem. Eng., 1-9. https://doi.org/10.1155/2021/6669366.
  12. Kucukarslan, S., Coskun, S.B. and Taskin, B. (2005), "Transient analysis of dam-reservoir interaction including the reservoir bottom effects", J. Fluid. Struct., 20(8), 1073-1084. https://doi.org/10.1016/j.jfluidstructs.2005.05.004.
  13. Li, X., Romo, M.P.O. and Aviles, J.L. (1996), "Finite element analysis of dam-reservoir systems using an exact far-boundary condition", Comput. Struct., 60(5), 751-762. https://doi.org/10.1016/0045-7949(95)00415-7.
  14. Maity, D. and Bhattacharyya, S.K. (1999), "Time-domain analysis of infinite reservoir by finite element method using a novel far-boundary condition", Finite Elem. Anal. Des., 32(2), 85-96. https://doi.org/10.1016/S0168-874X(98)00077-8.
  15. Neya, B.N. and Ardeshir, M.A. (2013), "An analytical solution for hydrodynamic pressure on dams considering the viscosity and wave absorption of the reservoir", Arab J. Sci. Eng., 38, 2023-2033. https://doi.org/10.1007/s13369-013-0566-5.
  16. Nguyen, H.X., Dinh, V.N. and Basu, B. (2021), "A comparison of smoothed particle hydrodynamics simulation with exact results from a nonlinear water wave model", Ocean Syst. Eng., 11(2), 185-201. https://doi.org/10.12989/ose.2021.11.2.185.
  17. Pelecanos, L., Kontoe, S. and Zdravkovic, L. (2016), "Dam-reservoir interaction effects on the elastic dynamic response of concrete and earth dams", Soil Dyn. Earthq. Eng., 82, 138-141. https://doi.org/10.1016/j.soildyn.2015.12.003.
  18. Saini, S.S., Bettess, P. and Zienkiewicz, O.C. (1978), "Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements", Earthq. Eng. Struct. D., 6(4), 363-374. https://doi.org/10.1002/eqe.4290060404.
  19. Samii, A. and Lotfi, V. (2007), "Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain", Finite Elem. Anal. Des., 431(13), 003-1012. https://doi.org/10.1016/j.finel.2007.06.015.
  20. Sharan, S.K. (1985), "Finite element analysis of unbounded and incompressible fluid domains", Int. J. Numer. Method. Eng., 21(9), 1659-1669. https://doi.org/10.1002/nme.1620210908.
  21. Sharan, S.K. (1987), "Time-domain analysis of infinite fluid vibration" Int. J. Numer. Method. Eng., 24(5), 945-958. https://doi.org/10.1002/nme.1620240508.
  22. Sharma, V., Fujisawa, K. and Murakami, A. (2019), "Space-time finite element procedure with block-iterative algorithm for dam-reservoir-soil interaction during earthquake loading", Int. J. Numer. Method. Eng., 120(3), 263-282. https://doi.org/10.1002/nme.6134.
  23. Tsai, C.S., Lee, G.C. and Ketter, R.L. (1990), "A semi-analytical method for time-domain analyses of damreservoir interactions", Int. J. Numer. Method. Eng., 29(5), 913-933. https://doi.org/10.1002/nme.1620290502.
  24. Wang, M., Chen, J., Wu, L. and Song, B. (2018), "Hydrodynamic pressure on gravity dams with different heights and the westergaard correction formula", Int. J. Geomech.,18(10). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001257.
  25. Wang, C.Z., Mitra, S. and Khoo, B.C. (2011), "Second-order wave radiation by multiple cylinders in time domain through the finite element method", Ocean Syst. Eng., 1(4), 317-336. https://doi.org/10.12989/ose.2011.1.4.317.
  26. Wang, X., Jin, F., Prempramote, S. and Song, C. (2011), "Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary", Comput. Struct., 89(7-8), 668-680. https://doi.org/10.1016/j.compstruc.2011.01.014.
  27. Westergaard, H.M (1933), "Water pressure on dams during earthquakes", Trans. ASCE, 98(2), 418-472. https://doi.org/10.1061/TACEAT.0004496.
  28. Yichao, G., Feng, J. and Yanjie, Xu. (2019), "Transient analysis of dam-reservoir interaction using a high-order doubly asymptotic open boundary", J. Eng. Mech., 145(1), 04018119. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001553.