과제정보
This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA2201-01.
참고문헌
- L. V. Ahlfors. An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938) 359-364. https://doi.org/10.1090/S0002-9947-1938-1501949-6
- L. V. Ahlfors. Complex analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, third edition, 1978. An introduction to the theory of analytic functions of one complex variable.
- Y.-J. Choi and K.-H. Lee. Existence of a complete holomorphic vector field via the Kahler-Einstein metric, Ann. Global Anal. Geom. 60 (2021) 97-109. https://doi.org/10.1007/s10455-021-09769-2
- Y.-J. Choi, K.-H. Lee, and S. Yoo. A certain Kahler potential of the Poincar'e metric and its characterization, J. Korean Math. Soc. 57 (2020) 1335-1345. https://doi.org/10.4134/JKMS.J190640
- C. Kai and T. Ohsawa. A note on the Bergman metric of bounded homogeneous domains, Nagoya Math. J. 186 (2007) 157-163. https://doi.org/10.1017/S0027763000009399
- P. Koebe. Uber die Uniformisierung reeller algebraischer Kurven. Gott. Nachr. 1907 (1907) 177-190.
- K.-H. Lee. A method of potential scaling in the study of pseudoconvex domains with noncompact automorphism group, J. Math. Anal. Appl. 499 (2021) Paper No. 124997, 15.
- H. Poincare. Sur l'uniformisation des fonctions analytiques, Acta Math. 31 (1908) 1-63. https://doi.org/10.1007/BF02415442